Users' Mathboxes Mathbox for Alan Sare < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ee101 Structured version   Visualization version   GIF version

Theorem ee101 42188
Description: e101 42187 without virtual deductions. (Contributed by Alan Sare, 23-Jul-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypotheses
Ref Expression
ee101.1 (𝜑𝜓)
ee101.2 𝜒
ee101.3 (𝜑𝜃)
ee101.4 (𝜓 → (𝜒 → (𝜃𝜏)))
Assertion
Ref Expression
ee101 (𝜑𝜏)

Proof of Theorem ee101
StepHypRef Expression
1 ee101.1 . 2 (𝜑𝜓)
2 ee101.2 . . 3 𝜒
32a1i 11 . 2 (𝜑𝜒)
4 ee101.3 . 2 (𝜑𝜃)
5 ee101.4 . 2 (𝜓 → (𝜒 → (𝜃𝜏)))
61, 3, 4, 5syl3c 66 1 (𝜑𝜏)
Colors of variables: wff setvar class
Syntax hints:  wi 4
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator