![]() |
Metamath
Proof Explorer Theorem List (p. 438 of 489) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | ![]() (1-30950) |
![]() (30951-32473) |
![]() (32474-48899) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | corcltrcl 43701 | The composition of the reflexive and transitive closures is the reflexive-transitive closure. (Contributed by RP, 17-Jun-2020.) |
⊢ (r* ∘ t+) = t* | ||
Theorem | cortrcltrcl 43702 | Composition with the reflexive-transitive closure absorbs the transitive closure. (Contributed by RP, 13-Jun-2020.) |
⊢ (t* ∘ t+) = t* | ||
Theorem | corclrtrcl 43703 | Composition with the reflexive-transitive closure absorbs the reflexive closure. (Contributed by RP, 13-Jun-2020.) |
⊢ (r* ∘ t*) = t* | ||
Theorem | cotrclrcl 43704 | The composition of the reflexive and transitive closures is the reflexive-transitive closure. (Contributed by RP, 21-Jun-2020.) |
⊢ (t+ ∘ r*) = t* | ||
Theorem | cortrclrcl 43705 | Composition with the reflexive-transitive closure absorbs the reflexive closure. (Contributed by RP, 13-Jun-2020.) |
⊢ (t* ∘ r*) = t* | ||
Theorem | cotrclrtrcl 43706 | Composition with the reflexive-transitive closure absorbs the transitive closure. (Contributed by RP, 13-Jun-2020.) |
⊢ (t+ ∘ t*) = t* | ||
Theorem | cortrclrtrcl 43707 | The reflexive-transitive closure is idempotent. (Contributed by RP, 13-Jun-2020.) |
⊢ (t* ∘ t*) = t* | ||
Theorems inspired by Begriffsschrift without restricting form and content to closely parallel those in [Frege1879]. | ||
Theorem | frege77d 43708 | If the images of both {𝐴} and 𝑈 are subsets of 𝑈 and 𝐵 follows 𝐴 in the transitive closure of 𝑅, then 𝐵 is an element of 𝑈. Similar to Proposition 77 of [Frege1879] p. 62. Compare with frege77 43902. (Contributed by RP, 15-Jul-2020.) |
⊢ (𝜑 → 𝑅 ∈ V) & ⊢ (𝜑 → 𝐴 ∈ V) & ⊢ (𝜑 → 𝐵 ∈ V) & ⊢ (𝜑 → 𝐴(t+‘𝑅)𝐵) & ⊢ (𝜑 → (𝑅 “ 𝑈) ⊆ 𝑈) & ⊢ (𝜑 → (𝑅 “ {𝐴}) ⊆ 𝑈) ⇒ ⊢ (𝜑 → 𝐵 ∈ 𝑈) | ||
Theorem | frege81d 43709 | If the image of 𝑈 is a subset 𝑈, 𝐴 is an element of 𝑈 and 𝐵 follows 𝐴 in the transitive closure of 𝑅, then 𝐵 is an element of 𝑈. Similar to Proposition 81 of [Frege1879] p. 63. Compare with frege81 43906. (Contributed by RP, 15-Jul-2020.) |
⊢ (𝜑 → 𝑅 ∈ V) & ⊢ (𝜑 → 𝐴 ∈ 𝑈) & ⊢ (𝜑 → 𝐵 ∈ V) & ⊢ (𝜑 → 𝐴(t+‘𝑅)𝐵) & ⊢ (𝜑 → (𝑅 “ 𝑈) ⊆ 𝑈) ⇒ ⊢ (𝜑 → 𝐵 ∈ 𝑈) | ||
Theorem | frege83d 43710 | If the image of the union of 𝑈 and 𝑉 is a subset of the union of 𝑈 and 𝑉, 𝐴 is an element of 𝑈 and 𝐵 follows 𝐴 in the transitive closure of 𝑅, then 𝐵 is an element of the union of 𝑈 and 𝑉. Similar to Proposition 83 of [Frege1879] p. 65. Compare with frege83 43908. (Contributed by RP, 15-Jul-2020.) |
⊢ (𝜑 → 𝑅 ∈ V) & ⊢ (𝜑 → 𝐴 ∈ 𝑈) & ⊢ (𝜑 → 𝐵 ∈ V) & ⊢ (𝜑 → 𝐴(t+‘𝑅)𝐵) & ⊢ (𝜑 → (𝑅 “ (𝑈 ∪ 𝑉)) ⊆ (𝑈 ∪ 𝑉)) ⇒ ⊢ (𝜑 → 𝐵 ∈ (𝑈 ∪ 𝑉)) | ||
Theorem | frege96d 43711 | If 𝐶 follows 𝐴 in the transitive closure of 𝑅 and 𝐵 follows 𝐶 in 𝑅, then 𝐵 follows 𝐴 in the transitive closure of 𝑅. Similar to Proposition 96 of [Frege1879] p. 71. Compare with frege96 43921. (Contributed by RP, 15-Jul-2020.) |
⊢ (𝜑 → 𝑅 ∈ V) & ⊢ (𝜑 → 𝐴 ∈ V) & ⊢ (𝜑 → 𝐵 ∈ V) & ⊢ (𝜑 → 𝐶 ∈ V) & ⊢ (𝜑 → 𝐴(t+‘𝑅)𝐶) & ⊢ (𝜑 → 𝐶𝑅𝐵) ⇒ ⊢ (𝜑 → 𝐴(t+‘𝑅)𝐵) | ||
Theorem | frege87d 43712 | If the images of both {𝐴} and 𝑈 are subsets of 𝑈 and 𝐶 follows 𝐴 in the transitive closure of 𝑅 and 𝐵 follows 𝐶 in 𝑅, then 𝐵 is an element of 𝑈. Similar to Proposition 87 of [Frege1879] p. 66. Compare with frege87 43912. (Contributed by RP, 15-Jul-2020.) |
⊢ (𝜑 → 𝑅 ∈ V) & ⊢ (𝜑 → 𝐴 ∈ V) & ⊢ (𝜑 → 𝐵 ∈ V) & ⊢ (𝜑 → 𝐶 ∈ V) & ⊢ (𝜑 → 𝐴(t+‘𝑅)𝐶) & ⊢ (𝜑 → 𝐶𝑅𝐵) & ⊢ (𝜑 → (𝑅 “ {𝐴}) ⊆ 𝑈) & ⊢ (𝜑 → (𝑅 “ 𝑈) ⊆ 𝑈) ⇒ ⊢ (𝜑 → 𝐵 ∈ 𝑈) | ||
Theorem | frege91d 43713 | If 𝐵 follows 𝐴 in 𝑅 then 𝐵 follows 𝐴 in the transitive closure of 𝑅. Similar to Proposition 91 of [Frege1879] p. 68. Comparw with frege91 43916. (Contributed by RP, 15-Jul-2020.) |
⊢ (𝜑 → 𝑅 ∈ V) & ⊢ (𝜑 → 𝐴𝑅𝐵) ⇒ ⊢ (𝜑 → 𝐴(t+‘𝑅)𝐵) | ||
Theorem | frege97d 43714 | If 𝐴 contains all elements after those in 𝑈 in the transitive closure of 𝑅, then the image under 𝑅 of 𝐴 is a subclass of 𝐴. Similar to Proposition 97 of [Frege1879] p. 71. Compare with frege97 43922. (Contributed by RP, 15-Jul-2020.) |
⊢ (𝜑 → 𝑅 ∈ V) & ⊢ (𝜑 → 𝐴 = ((t+‘𝑅) “ 𝑈)) ⇒ ⊢ (𝜑 → (𝑅 “ 𝐴) ⊆ 𝐴) | ||
Theorem | frege98d 43715 | If 𝐶 follows 𝐴 and 𝐵 follows 𝐶 in the transitive closure of 𝑅, then 𝐵 follows 𝐴 in the transitive closure of 𝑅. Similar to Proposition 98 of [Frege1879] p. 71. Compare with frege98 43923. (Contributed by RP, 15-Jul-2020.) |
⊢ (𝜑 → 𝐴 ∈ V) & ⊢ (𝜑 → 𝐵 ∈ V) & ⊢ (𝜑 → 𝐶 ∈ V) & ⊢ (𝜑 → 𝐴(t+‘𝑅)𝐶) & ⊢ (𝜑 → 𝐶(t+‘𝑅)𝐵) ⇒ ⊢ (𝜑 → 𝐴(t+‘𝑅)𝐵) | ||
Theorem | frege102d 43716 | If either 𝐴 and 𝐶 are the same or 𝐶 follows 𝐴 in the transitive closure of 𝑅 and 𝐵 is the successor to 𝐶, then 𝐵 follows 𝐴 in the transitive closure of 𝑅. Similar to Proposition 102 of [Frege1879] p. 72. Compare with frege102 43927. (Contributed by RP, 15-Jul-2020.) |
⊢ (𝜑 → 𝑅 ∈ V) & ⊢ (𝜑 → 𝐴 ∈ V) & ⊢ (𝜑 → 𝐵 ∈ V) & ⊢ (𝜑 → 𝐶 ∈ V) & ⊢ (𝜑 → (𝐴(t+‘𝑅)𝐶 ∨ 𝐴 = 𝐶)) & ⊢ (𝜑 → 𝐶𝑅𝐵) ⇒ ⊢ (𝜑 → 𝐴(t+‘𝑅)𝐵) | ||
Theorem | frege106d 43717 | If 𝐵 follows 𝐴 in 𝑅, then either 𝐴 and 𝐵 are the same or 𝐵 follows 𝐴 in 𝑅. Similar to Proposition 106 of [Frege1879] p. 73. Compare with frege106 43931. (Contributed by RP, 15-Jul-2020.) |
⊢ (𝜑 → 𝐴𝑅𝐵) ⇒ ⊢ (𝜑 → (𝐴𝑅𝐵 ∨ 𝐴 = 𝐵)) | ||
Theorem | frege108d 43718 | If either 𝐴 and 𝐶 are the same or 𝐶 follows 𝐴 in the transitive closure of 𝑅 and 𝐵 is the successor to 𝐶, then either 𝐴 and 𝐵 are the same or 𝐵 follows 𝐴 in the transitive closure of 𝑅. Similar to Proposition 108 of [Frege1879] p. 74. Compare with frege108 43933. (Contributed by RP, 15-Jul-2020.) |
⊢ (𝜑 → 𝑅 ∈ V) & ⊢ (𝜑 → 𝐴 ∈ V) & ⊢ (𝜑 → 𝐵 ∈ V) & ⊢ (𝜑 → 𝐶 ∈ V) & ⊢ (𝜑 → (𝐴(t+‘𝑅)𝐶 ∨ 𝐴 = 𝐶)) & ⊢ (𝜑 → 𝐶𝑅𝐵) ⇒ ⊢ (𝜑 → (𝐴(t+‘𝑅)𝐵 ∨ 𝐴 = 𝐵)) | ||
Theorem | frege109d 43719 | If 𝐴 contains all elements of 𝑈 and all elements after those in 𝑈 in the transitive closure of 𝑅, then the image under 𝑅 of 𝐴 is a subclass of 𝐴. Similar to Proposition 109 of [Frege1879] p. 74. Compare with frege109 43934. (Contributed by RP, 15-Jul-2020.) |
⊢ (𝜑 → 𝑅 ∈ V) & ⊢ (𝜑 → 𝐴 = (𝑈 ∪ ((t+‘𝑅) “ 𝑈))) ⇒ ⊢ (𝜑 → (𝑅 “ 𝐴) ⊆ 𝐴) | ||
Theorem | frege114d 43720 | If either 𝑅 relates 𝐴 and 𝐵 or 𝐴 and 𝐵 are the same, then either 𝐴 and 𝐵 are the same, 𝑅 relates 𝐴 and 𝐵, 𝑅 relates 𝐵 and 𝐴. Similar to Proposition 114 of [Frege1879] p. 76. Compare with frege114 43939. (Contributed by RP, 15-Jul-2020.) |
⊢ (𝜑 → (𝐴𝑅𝐵 ∨ 𝐴 = 𝐵)) ⇒ ⊢ (𝜑 → (𝐴𝑅𝐵 ∨ 𝐴 = 𝐵 ∨ 𝐵𝑅𝐴)) | ||
Theorem | frege111d 43721 | If either 𝐴 and 𝐶 are the same or 𝐶 follows 𝐴 in the transitive closure of 𝑅 and 𝐵 is the successor to 𝐶, then either 𝐴 and 𝐵 are the same or 𝐴 follows 𝐵 or 𝐵 and 𝐴 in the transitive closure of 𝑅. Similar to Proposition 111 of [Frege1879] p. 75. Compare with frege111 43936. (Contributed by RP, 15-Jul-2020.) |
⊢ (𝜑 → 𝑅 ∈ V) & ⊢ (𝜑 → 𝐴 ∈ V) & ⊢ (𝜑 → 𝐵 ∈ V) & ⊢ (𝜑 → 𝐶 ∈ V) & ⊢ (𝜑 → (𝐴(t+‘𝑅)𝐶 ∨ 𝐴 = 𝐶)) & ⊢ (𝜑 → 𝐶𝑅𝐵) ⇒ ⊢ (𝜑 → (𝐴(t+‘𝑅)𝐵 ∨ 𝐴 = 𝐵 ∨ 𝐵(t+‘𝑅)𝐴)) | ||
Theorem | frege122d 43722 | If 𝐹 is a function, 𝐴 is the successor of 𝑋, and 𝐵 is the successor of 𝑋, then 𝐴 and 𝐵 are the same (or 𝐵 follows 𝐴 in the transitive closure of 𝐹). Similar to Proposition 122 of [Frege1879] p. 79. Compare with frege122 43947. (Contributed by RP, 15-Jul-2020.) |
⊢ (𝜑 → 𝐴 = (𝐹‘𝑋)) & ⊢ (𝜑 → 𝐵 = (𝐹‘𝑋)) ⇒ ⊢ (𝜑 → (𝐴(t+‘𝐹)𝐵 ∨ 𝐴 = 𝐵)) | ||
Theorem | frege124d 43723 | If 𝐹 is a function, 𝐴 is the successor of 𝑋, and 𝐵 follows 𝑋 in the transitive closure of 𝐹, then 𝐴 and 𝐵 are the same or 𝐵 follows 𝐴 in the transitive closure of 𝐹. Similar to Proposition 124 of [Frege1879] p. 80. Compare with frege124 43949. (Contributed by RP, 16-Jul-2020.) |
⊢ (𝜑 → 𝐹 ∈ V) & ⊢ (𝜑 → 𝑋 ∈ dom 𝐹) & ⊢ (𝜑 → 𝐴 = (𝐹‘𝑋)) & ⊢ (𝜑 → 𝑋(t+‘𝐹)𝐵) & ⊢ (𝜑 → Fun 𝐹) ⇒ ⊢ (𝜑 → (𝐴(t+‘𝐹)𝐵 ∨ 𝐴 = 𝐵)) | ||
Theorem | frege126d 43724 | If 𝐹 is a function, 𝐴 is the successor of 𝑋, and 𝐵 follows 𝑋 in the transitive closure of 𝐹, then (for distinct 𝐴 and 𝐵) either 𝐴 follows 𝐵 or 𝐵 follows 𝐴 in the transitive closure of 𝐹. Similar to Proposition 126 of [Frege1879] p. 81. Compare with frege126 43951. (Contributed by RP, 16-Jul-2020.) |
⊢ (𝜑 → 𝐹 ∈ V) & ⊢ (𝜑 → 𝑋 ∈ dom 𝐹) & ⊢ (𝜑 → 𝐴 = (𝐹‘𝑋)) & ⊢ (𝜑 → 𝑋(t+‘𝐹)𝐵) & ⊢ (𝜑 → Fun 𝐹) ⇒ ⊢ (𝜑 → (𝐴(t+‘𝐹)𝐵 ∨ 𝐴 = 𝐵 ∨ 𝐵(t+‘𝐹)𝐴)) | ||
Theorem | frege129d 43725 | If 𝐹 is a function and (for distinct 𝐴 and 𝐵) either 𝐴 follows 𝐵 or 𝐵 follows 𝐴 in the transitive closure of 𝐹, the successor of 𝐴 is either 𝐵 or it follows 𝐵 or it comes before 𝐵 in the transitive closure of 𝐹. Similar to Proposition 129 of [Frege1879] p. 83. Comparw with frege129 43954. (Contributed by RP, 16-Jul-2020.) |
⊢ (𝜑 → 𝐹 ∈ V) & ⊢ (𝜑 → 𝐴 ∈ dom 𝐹) & ⊢ (𝜑 → 𝐶 = (𝐹‘𝐴)) & ⊢ (𝜑 → (𝐴(t+‘𝐹)𝐵 ∨ 𝐴 = 𝐵 ∨ 𝐵(t+‘𝐹)𝐴)) & ⊢ (𝜑 → Fun 𝐹) ⇒ ⊢ (𝜑 → (𝐵(t+‘𝐹)𝐶 ∨ 𝐵 = 𝐶 ∨ 𝐶(t+‘𝐹)𝐵)) | ||
Theorem | frege131d 43726 | If 𝐹 is a function and 𝐴 contains all elements of 𝑈 and all elements before or after those elements of 𝑈 in the transitive closure of 𝐹, then the image under 𝐹 of 𝐴 is a subclass of 𝐴. Similar to Proposition 131 of [Frege1879] p. 85. Compare with frege131 43956. (Contributed by RP, 17-Jul-2020.) |
⊢ (𝜑 → 𝐹 ∈ V) & ⊢ (𝜑 → 𝐴 = (𝑈 ∪ ((◡(t+‘𝐹) “ 𝑈) ∪ ((t+‘𝐹) “ 𝑈)))) & ⊢ (𝜑 → Fun 𝐹) ⇒ ⊢ (𝜑 → (𝐹 “ 𝐴) ⊆ 𝐴) | ||
Theorem | frege133d 43727 | If 𝐹 is a function and 𝐴 and 𝐵 both follow 𝑋 in the transitive closure of 𝐹, then (for distinct 𝐴 and 𝐵) either 𝐴 follows 𝐵 or 𝐵 follows 𝐴 in the transitive closure of 𝐹 (or both if it loops). Similar to Proposition 133 of [Frege1879] p. 86. Compare with frege133 43958. (Contributed by RP, 18-Jul-2020.) |
⊢ (𝜑 → 𝐹 ∈ V) & ⊢ (𝜑 → 𝑋(t+‘𝐹)𝐴) & ⊢ (𝜑 → 𝑋(t+‘𝐹)𝐵) & ⊢ (𝜑 → Fun 𝐹) ⇒ ⊢ (𝜑 → (𝐴(t+‘𝐹)𝐵 ∨ 𝐴 = 𝐵 ∨ 𝐵(t+‘𝐹)𝐴)) | ||
In 1879, Frege introduced notation for documenting formal reasoning about propositions (and classes) which covered elements of propositional logic, predicate calculus and reasoning about relations. However, due to the pitfalls of naive set theory, adapting this work for inclusion in set.mm required dividing statements about propositions from those about classes and identifying when a restriction to sets is required. For an overview comparing the details of Frege's two-dimensional notation and that used in set.mm, see mmfrege.html. See ru 3802 for discussion of an example of a class that is not a set. Numbered propositions from [Frege1879]. ax-frege1 43752, ax-frege2 43753, ax-frege8 43771, ax-frege28 43792, ax-frege31 43796, ax-frege41 43807, frege52 (see ax-frege52a 43819, frege52b 43851, and ax-frege52c 43850 for translations), frege54 (see ax-frege54a 43824, frege54b 43855 and ax-frege54c 43854 for translations) and frege58 (see ax-frege58a 43837, ax-frege58b 43863 and frege58c 43883 for translations) are considered "core" or axioms. However, at least ax-frege8 43771 can be derived from ax-frege1 43752 and ax-frege2 43753, see axfrege8 43769. Frege introduced implication, negation and the universal quantifier as primitives and did not in the numbered propositions use other logical connectives other than equivalence introduced in ax-frege52a 43819, frege52b 43851, and ax-frege52c 43850. In dffrege69 43894, Frege introduced 𝑅 hereditary 𝐴 to say that relation 𝑅, when restricted to operate on elements of class 𝐴, will only have elements of class 𝐴 in its domain; see df-he 43735 for a definition in terms of image and subset. In dffrege76 43901, Frege introduced notation for the concept of two sets related by the transitive closure of a relation, for which we write 𝑋(t+‘𝑅)𝑌, which requires 𝑅 to also be a set. In dffrege99 43924, Frege introduced notation for the concept of two sets either identical or related by the transitive closure of a relation, for which we write 𝑋((t+‘𝑅) ∪ I )𝑌, which is a superclass of sets related by the reflexive-transitive relation 𝑋(t*‘𝑅)𝑌. Finally, in dffrege115 43940, Frege introduced notation for the concept of a relation having the property elements in its domain pair up with only one element each in its range, for which we write Fun ◡◡𝑅 (to ignore any non-relational content of the class 𝑅). Frege did this without the expressing concept of a relation (or its transitive closure) as a class, and needed to invent conventions for discussing indeterminate propositions with two slots free and how to recognize which of the slots was domain and which was range. See mmfrege.html 43940 for details. English translations for specific propositions lifted in part from a translation by Stefan Bauer-Mengelberg as reprinted in From Frege to Goedel: A Source Book in Mathematical Logic, 1879-1931. An attempt to align these propositions in the larger set.mm database has also been made. See frege77d 43708 for an example. | ||
Section 2 introduces the turnstile ⊢ which turns an idea which may be true 𝜑 into an assertion that it does hold true ⊢ 𝜑. Section 5 introduces implication, (𝜑 → 𝜓). Section 6 introduces the single rule of interference relied upon, modus ponens ax-mp 5. Section 7 introduces negation and with in synonyms for or (¬ 𝜑 → 𝜓) , and ¬ (𝜑 → ¬ 𝜓), and two for exclusive-or corresponding to df-or 847, df-an 396, dfxor4 43728, dfxor5 43729. Section 8 introduces the problematic notation for identity of conceptual content which must be separated into cases for biconditional (𝜑 ↔ 𝜓) or class equality 𝐴 = 𝐵 in this adaptation. Section 10 introduces "truth functions" for one or two variables in equally troubling notation, as the arguments may be understood to be logical predicates or collections. Here f(𝜑) is interpreted to mean if-(𝜑, 𝜓, 𝜒) where the content of the "function" is specified by the latter two arguments or logical equivalent, while g(𝐴) is read as 𝐴 ∈ 𝐺 and h(𝐴, 𝐵) as 𝐴𝐻𝐵. This necessarily introduces a need for set theory as both 𝐴 ∈ 𝐺 and 𝐴𝐻𝐵 cannot hold unless 𝐴 is a set. (Also 𝐵.) Section 11 introduces notation for generality, but there is no standard notation for generality when the variable is a proposition because it was realized after Frege that the universe of all possible propositions includes paradoxical constructions leading to the failure of naive set theory. So adopting f(𝜑) as if-(𝜑, 𝜓, 𝜒) would result in the translation of ∀𝜑 f (𝜑) as (𝜓 ∧ 𝜒). For collections, we must generalize over set variables or run into the same problems; this leads to ∀𝐴 g(𝐴) being translated as ∀𝑎𝑎 ∈ 𝐺 and so forth. Under this interpreation the text of section 11 gives us sp 2184 (or simpl 482 and simpr 484 and anifp 1072 in the propositional case) and statements similar to cbvalivw 2006, ax-gen 1793, alrimiv 1926, and alrimdv 1928. These last four introduce a generality and have no useful definition in terms of propositional variables. Section 12 introduces some combinations of primitive symbols and their human language counterparts. Using class notation, these can also be expressed without dummy variables. All are A, ∀𝑥𝑥 ∈ 𝐴, ¬ ∃𝑥¬ 𝑥 ∈ 𝐴 alex 1824, 𝐴 = V eqv 3498; Some are not B, ¬ ∀𝑥𝑥 ∈ 𝐵, ∃𝑥¬ 𝑥 ∈ 𝐵 exnal 1825, 𝐵 ⊊ V pssv 4472, 𝐵 ≠ V nev 43732; There are no C, ∀𝑥¬ 𝑥 ∈ 𝐶, ¬ ∃𝑥𝑥 ∈ 𝐶 alnex 1779, 𝐶 = ∅ eq0 4373; There exist D, ¬ ∀𝑥¬ 𝑥 ∈ 𝐷, ∃𝑥𝑥 ∈ 𝐷 df-ex 1778, ∅ ⊊ 𝐷 0pss 4470, 𝐷 ≠ ∅ n0 4376. Notation for relations between expressions also can be written in various ways. All E are P, ∀𝑥(𝑥 ∈ 𝐸 → 𝑥 ∈ 𝑃), ¬ ∃𝑥(𝑥 ∈ 𝐸 ∧ ¬ 𝑥 ∈ 𝑃) dfss6 3998, 𝐸 = (𝐸 ∩ 𝑃) dfss2 3994, 𝐸 ⊆ 𝑃 df-ss 3993; No F are P, ∀𝑥(𝑥 ∈ 𝐹 → ¬ 𝑥 ∈ 𝑃), ¬ ∃𝑥(𝑥 ∈ 𝐹 ∧ 𝑥 ∈ 𝑃) alinexa 1841, (𝐹 ∩ 𝑃) = ∅ disj1 4475; Some G are not P, ¬ ∀𝑥(𝑥 ∈ 𝐺 → 𝑥 ∈ 𝑃), ∃𝑥(𝑥 ∈ 𝐺 ∧ ¬ 𝑥 ∈ 𝑃) exanali 1858, (𝐺 ∩ 𝑃) ⊊ 𝐺 nssinpss 4286, ¬ 𝐺 ⊆ 𝑃 nss 4073; Some H are P, ¬ ∀𝑥(𝑥 ∈ 𝐻 → ¬ 𝑥 ∈ 𝑃), ∃𝑥(𝑥 ∈ 𝐻 ∧ 𝑥 ∈ 𝑃) exnalimn 1842, ∅ ⊊ (𝐻 ∩ 𝑃) 0pssin 43733, (𝐻 ∩ 𝑃) ≠ ∅ ndisj 4393. | ||
Theorem | dfxor4 43728 | Express exclusive-or in terms of implication and negation. Statement in [Frege1879] p. 12. (Contributed by RP, 14-Apr-2020.) |
⊢ ((𝜑 ⊻ 𝜓) ↔ ¬ ((¬ 𝜑 → 𝜓) → ¬ (𝜑 → ¬ 𝜓))) | ||
Theorem | dfxor5 43729 | Express exclusive-or in terms of implication and negation. Statement in [Frege1879] p. 12. (Contributed by RP, 14-Apr-2020.) |
⊢ ((𝜑 ⊻ 𝜓) ↔ ¬ ((𝜑 → ¬ 𝜓) → ¬ (¬ 𝜑 → 𝜓))) | ||
Theorem | df3or2 43730 | Express triple-or in terms of implication and negation. Statement in [Frege1879] p. 11. (Contributed by RP, 25-Jul-2020.) |
⊢ ((𝜑 ∨ 𝜓 ∨ 𝜒) ↔ (¬ 𝜑 → (¬ 𝜓 → 𝜒))) | ||
Theorem | df3an2 43731 | Express triple-and in terms of implication and negation. Statement in [Frege1879] p. 12. (Contributed by RP, 25-Jul-2020.) |
⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) ↔ ¬ (𝜑 → (𝜓 → ¬ 𝜒))) | ||
Theorem | nev 43732* | Express that not every set is in a class. (Contributed by RP, 16-Apr-2020.) |
⊢ (𝐴 ≠ V ↔ ¬ ∀𝑥 𝑥 ∈ 𝐴) | ||
Theorem | 0pssin 43733* | Express that an intersection is not empty. (Contributed by RP, 16-Apr-2020.) |
⊢ (∅ ⊊ (𝐴 ∩ 𝐵) ↔ ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵)) | ||
The statement 𝑅 hereditary 𝐴 means relation 𝑅 is hereditary (in the sense of Frege) in the class 𝐴 or (𝑅 “ 𝐴) ⊆ 𝐴. The former is only a slight reduction in the number of symbols, but this reduces the number of floating hypotheses needed to be checked. As Frege was not using the language of classes or sets, this naturally differs from the set-theoretic notion that a set is hereditary in a property: that all of its elements have a property and all of their elements have the property and so-on. | ||
Syntax | whe 43734 | The property of relation 𝑅 being hereditary in class 𝐴. |
wff 𝑅 hereditary 𝐴 | ||
Definition | df-he 43735 | The property of relation 𝑅 being hereditary in class 𝐴. (Contributed by RP, 27-Mar-2020.) |
⊢ (𝑅 hereditary 𝐴 ↔ (𝑅 “ 𝐴) ⊆ 𝐴) | ||
Theorem | dfhe2 43736 | The property of relation 𝑅 being hereditary in class 𝐴. (Contributed by RP, 27-Mar-2020.) |
⊢ (𝑅 hereditary 𝐴 ↔ (𝑅 ↾ 𝐴) ⊆ (𝐴 × 𝐴)) | ||
Theorem | dfhe3 43737* | The property of relation 𝑅 being hereditary in class 𝐴. (Contributed by RP, 27-Mar-2020.) |
⊢ (𝑅 hereditary 𝐴 ↔ ∀𝑥(𝑥 ∈ 𝐴 → ∀𝑦(𝑥𝑅𝑦 → 𝑦 ∈ 𝐴))) | ||
Theorem | heeq12 43738 | Equality law for relations being herditary over a class. (Contributed by RP, 27-Mar-2020.) |
⊢ ((𝑅 = 𝑆 ∧ 𝐴 = 𝐵) → (𝑅 hereditary 𝐴 ↔ 𝑆 hereditary 𝐵)) | ||
Theorem | heeq1 43739 | Equality law for relations being herditary over a class. (Contributed by RP, 27-Mar-2020.) |
⊢ (𝑅 = 𝑆 → (𝑅 hereditary 𝐴 ↔ 𝑆 hereditary 𝐴)) | ||
Theorem | heeq2 43740 | Equality law for relations being herditary over a class. (Contributed by RP, 27-Mar-2020.) |
⊢ (𝐴 = 𝐵 → (𝑅 hereditary 𝐴 ↔ 𝑅 hereditary 𝐵)) | ||
Theorem | sbcheg 43741 | Distribute proper substitution through herditary relation. (Contributed by RP, 29-Jun-2020.) |
⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥]𝐵 hereditary 𝐶 ↔ ⦋𝐴 / 𝑥⦌𝐵 hereditary ⦋𝐴 / 𝑥⦌𝐶)) | ||
Theorem | hess 43742 | Subclass law for relations being herditary over a class. (Contributed by RP, 27-Mar-2020.) |
⊢ (𝑆 ⊆ 𝑅 → (𝑅 hereditary 𝐴 → 𝑆 hereditary 𝐴)) | ||
Theorem | xphe 43743 | Any Cartesian product is hereditary in its second class. (Contributed by RP, 27-Mar-2020.) (Proof shortened by OpenAI, 3-Jul-2020.) |
⊢ (𝐴 × 𝐵) hereditary 𝐵 | ||
Theorem | 0he 43744 | The empty relation is hereditary in any class. (Contributed by RP, 27-Mar-2020.) |
⊢ ∅ hereditary 𝐴 | ||
Theorem | 0heALT 43745 | The empty relation is hereditary in any class. (Contributed by RP, 27-Mar-2020.) (New usage is discouraged.) (Proof modification is discouraged.) |
⊢ ∅ hereditary 𝐴 | ||
Theorem | he0 43746 | Any relation is hereditary in the empty set. (Contributed by RP, 27-Mar-2020.) |
⊢ 𝐴 hereditary ∅ | ||
Theorem | unhe1 43747 | The union of two relations hereditary in a class is also hereditary in a class. (Contributed by RP, 28-Mar-2020.) |
⊢ ((𝑅 hereditary 𝐴 ∧ 𝑆 hereditary 𝐴) → (𝑅 ∪ 𝑆) hereditary 𝐴) | ||
Theorem | snhesn 43748 | Any singleton is hereditary in any singleton. (Contributed by RP, 28-Mar-2020.) |
⊢ {〈𝐴, 𝐴〉} hereditary {𝐵} | ||
Theorem | idhe 43749 | The identity relation is hereditary in any class. (Contributed by RP, 28-Mar-2020.) |
⊢ I hereditary 𝐴 | ||
Theorem | psshepw 43750 | The relation between sets and their proper subsets is hereditary in the powerclass of any class. (Contributed by RP, 28-Mar-2020.) |
⊢ ◡ [⊊] hereditary 𝒫 𝐴 | ||
Theorem | sshepw 43751 | The relation between sets and their subsets is hereditary in the powerclass of any class. (Contributed by RP, 28-Mar-2020.) |
⊢ (◡ [⊊] ∪ I ) hereditary 𝒫 𝐴 | ||
Axiom | ax-frege1 43752 | The case in which 𝜑 is denied, 𝜓 is affirmed, and 𝜑 is affirmed is excluded. This is evident since 𝜑 cannot at the same time be denied and affirmed. Axiom 1 of [Frege1879] p. 26. Identical to ax-1 6. (Contributed by RP, 24-Dec-2019.) (New usage is discouraged.) |
⊢ (𝜑 → (𝜓 → 𝜑)) | ||
Axiom | ax-frege2 43753 | If a proposition 𝜒 is a necessary consequence of two propositions 𝜓 and 𝜑 and one of those, 𝜓, is in turn a necessary consequence of the other, 𝜑, then the proposition 𝜒 is a necessary consequence of the latter one, 𝜑, alone. Axiom 2 of [Frege1879] p. 26. Identical to ax-2 7. (Contributed by RP, 24-Dec-2019.) (New usage is discouraged.) |
⊢ ((𝜑 → (𝜓 → 𝜒)) → ((𝜑 → 𝜓) → (𝜑 → 𝜒))) | ||
Theorem | rp-simp2-frege 43754 | Simplification of triple conjunction. Compare with simp2 1137. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
⊢ (𝜑 → (𝜓 → (𝜒 → 𝜓))) | ||
Theorem | rp-simp2 43755 | Simplification of triple conjunction. Identical to simp2 1137. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜓) | ||
Theorem | rp-frege3g 43756 |
Add antecedent to ax-frege2 43753. More general statement than frege3 43757.
Like ax-frege2 43753, it is essentially a closed form of mpd 15,
however it
has an extra antecedent.
It would be more natural to prove from a1i 11 and ax-frege2 43753 in Metamath. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
⊢ (𝜑 → ((𝜓 → (𝜒 → 𝜃)) → ((𝜓 → 𝜒) → (𝜓 → 𝜃)))) | ||
Theorem | frege3 43757 | Add antecedent to ax-frege2 43753. Special case of rp-frege3g 43756. Proposition 3 of [Frege1879] p. 29. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
⊢ ((𝜑 → 𝜓) → ((𝜒 → (𝜑 → 𝜓)) → ((𝜒 → 𝜑) → (𝜒 → 𝜓)))) | ||
Theorem | rp-misc1-frege 43758 | Double-use of ax-frege2 43753. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
⊢ (((𝜑 → (𝜓 → 𝜒)) → (𝜑 → 𝜓)) → ((𝜑 → (𝜓 → 𝜒)) → (𝜑 → 𝜒))) | ||
Theorem | rp-frege24 43759 | Introducing an embedded antecedent. Alternate proof for frege24 43777. Closed form for a1d 25. (Contributed by RP, 24-Dec-2019.) |
⊢ ((𝜑 → 𝜓) → (𝜑 → (𝜒 → 𝜓))) | ||
Theorem | rp-frege4g 43760 | Deduction related to distribution. (Contributed by RP, 24-Dec-2019.) |
⊢ ((𝜑 → (𝜓 → (𝜒 → 𝜃))) → (𝜑 → ((𝜓 → 𝜒) → (𝜓 → 𝜃)))) | ||
Theorem | frege4 43761 | Special case of closed form of a2d 29. Special case of rp-frege4g 43760. Proposition 4 of [Frege1879] p. 31. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
⊢ (((𝜑 → 𝜓) → (𝜒 → (𝜑 → 𝜓))) → ((𝜑 → 𝜓) → ((𝜒 → 𝜑) → (𝜒 → 𝜓)))) | ||
Theorem | frege5 43762 | A closed form of syl 17. Identical to imim2 58. Theorem *2.05 of [WhiteheadRussell] p. 100. Proposition 5 of [Frege1879] p. 32. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
⊢ ((𝜑 → 𝜓) → ((𝜒 → 𝜑) → (𝜒 → 𝜓))) | ||
Theorem | rp-7frege 43763 | Distribute antecedent and add another. (Contributed by RP, 24-Dec-2019.) |
⊢ ((𝜑 → (𝜓 → 𝜒)) → (𝜃 → ((𝜑 → 𝜓) → (𝜑 → 𝜒)))) | ||
Theorem | rp-4frege 43764 | Elimination of a nested antecedent of special form. (Contributed by RP, 24-Dec-2019.) |
⊢ ((𝜑 → ((𝜓 → 𝜑) → 𝜒)) → (𝜑 → 𝜒)) | ||
Theorem | rp-6frege 43765 | Elimination of a nested antecedent of special form. (Contributed by RP, 24-Dec-2019.) |
⊢ (𝜑 → ((𝜓 → ((𝜒 → 𝜓) → 𝜃)) → (𝜓 → 𝜃))) | ||
Theorem | rp-8frege 43766 | Eliminate antecedent when it is implied by previous antecedent. (Contributed by RP, 24-Dec-2019.) |
⊢ ((𝜑 → (𝜓 → ((𝜒 → 𝜓) → 𝜃))) → (𝜑 → (𝜓 → 𝜃))) | ||
Theorem | rp-frege25 43767 | Closed form for a1dd 50. Alternate route to Proposition 25 of [Frege1879] p. 42. (Contributed by RP, 24-Dec-2019.) |
⊢ ((𝜑 → (𝜓 → 𝜒)) → (𝜑 → (𝜓 → (𝜃 → 𝜒)))) | ||
Theorem | frege6 43768 | A closed form of imim2d 57 which is a deduction adding nested antecedents. Proposition 6 of [Frege1879] p. 33. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
⊢ ((𝜑 → (𝜓 → 𝜒)) → (𝜑 → ((𝜃 → 𝜓) → (𝜃 → 𝜒)))) | ||
Theorem | axfrege8 43769 |
Swap antecedents. Identical to pm2.04 90. This demonstrates that Axiom 8
of [Frege1879] p. 35 is redundant.
Proof follows closely proof of pm2.04 90 in https://us.metamath.org/mmsolitaire/pmproofs.txt 90, but in the style of Frege's 1879 work. (Contributed by RP, 24-Dec-2019.) (New usage is discouraged.) (Proof modification is discouraged.) |
⊢ ((𝜑 → (𝜓 → 𝜒)) → (𝜓 → (𝜑 → 𝜒))) | ||
Theorem | frege7 43770 | A closed form of syl6 35. The first antecedent is used to replace the consequent of the second antecedent. Proposition 7 of [Frege1879] p. 34. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
⊢ ((𝜑 → 𝜓) → ((𝜒 → (𝜃 → 𝜑)) → (𝜒 → (𝜃 → 𝜓)))) | ||
Axiom | ax-frege8 43771 | Swap antecedents. If two conditions have a proposition as a consequence, their order is immaterial. Third axiom of Frege's 1879 work but identical to pm2.04 90 which can be proved from only ax-mp 5, ax-frege1 43752, and ax-frege2 43753. (Redundant) Axiom 8 of [Frege1879] p. 35. (Contributed by RP, 24-Dec-2019.) (New usage is discouraged.) |
⊢ ((𝜑 → (𝜓 → 𝜒)) → (𝜓 → (𝜑 → 𝜒))) | ||
Theorem | frege26 43772 | Identical to idd 24. Proposition 26 of [Frege1879] p. 42. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
⊢ (𝜑 → (𝜓 → 𝜓)) | ||
Theorem | frege27 43773 | We cannot (at the same time) affirm 𝜑 and deny 𝜑. Identical to id 22. Proposition 27 of [Frege1879] p. 43. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
⊢ (𝜑 → 𝜑) | ||
Theorem | frege9 43774 | Closed form of syl 17 with swapped antecedents. This proposition differs from frege5 43762 only in an unessential way. Identical to imim1 83. Proposition 9 of [Frege1879] p. 35. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
⊢ ((𝜑 → 𝜓) → ((𝜓 → 𝜒) → (𝜑 → 𝜒))) | ||
Theorem | frege12 43775 | A closed form of com23 86. Proposition 12 of [Frege1879] p. 37. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
⊢ ((𝜑 → (𝜓 → (𝜒 → 𝜃))) → (𝜑 → (𝜒 → (𝜓 → 𝜃)))) | ||
Theorem | frege11 43776 | Elimination of a nested antecedent as a partial converse of ja 186. If the proposition that 𝜓 takes place or 𝜑 does not is a sufficient condition for 𝜒, then 𝜓 by itself is a sufficient condition for 𝜒. Identical to jarr 106. Proposition 11 of [Frege1879] p. 36. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
⊢ (((𝜑 → 𝜓) → 𝜒) → (𝜓 → 𝜒)) | ||
Theorem | frege24 43777 | Closed form for a1d 25. Deduction introducing an embedded antecedent. Identical to rp-frege24 43759 which was proved without relying on ax-frege8 43771. Proposition 24 of [Frege1879] p. 42. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
⊢ ((𝜑 → 𝜓) → (𝜑 → (𝜒 → 𝜓))) | ||
Theorem | frege16 43778 | A closed form of com34 91. Proposition 16 of [Frege1879] p. 38. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
⊢ ((𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) → (𝜑 → (𝜓 → (𝜃 → (𝜒 → 𝜏))))) | ||
Theorem | frege25 43779 | Closed form for a1dd 50. Proposition 25 of [Frege1879] p. 42. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
⊢ ((𝜑 → (𝜓 → 𝜒)) → (𝜑 → (𝜓 → (𝜃 → 𝜒)))) | ||
Theorem | frege18 43780 | Closed form of a syllogism followed by a swap of antecedents. Proposition 18 of [Frege1879] p. 39. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
⊢ ((𝜑 → (𝜓 → 𝜒)) → ((𝜃 → 𝜑) → (𝜓 → (𝜃 → 𝜒)))) | ||
Theorem | frege22 43781 | A closed form of com45 97. Proposition 22 of [Frege1879] p. 41. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
⊢ ((𝜑 → (𝜓 → (𝜒 → (𝜃 → (𝜏 → 𝜂))))) → (𝜑 → (𝜓 → (𝜒 → (𝜏 → (𝜃 → 𝜂)))))) | ||
Theorem | frege10 43782 | Result commuting antecedents within an antecedent. Proposition 10 of [Frege1879] p. 36. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
⊢ (((𝜑 → (𝜓 → 𝜒)) → 𝜃) → ((𝜓 → (𝜑 → 𝜒)) → 𝜃)) | ||
Theorem | frege17 43783 | A closed form of com3l 89. Proposition 17 of [Frege1879] p. 39. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
⊢ ((𝜑 → (𝜓 → (𝜒 → 𝜃))) → (𝜓 → (𝜒 → (𝜑 → 𝜃)))) | ||
Theorem | frege13 43784 | A closed form of com3r 87. Proposition 13 of [Frege1879] p. 37. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
⊢ ((𝜑 → (𝜓 → (𝜒 → 𝜃))) → (𝜒 → (𝜑 → (𝜓 → 𝜃)))) | ||
Theorem | frege14 43785 | Closed form of a deduction based on com3r 87. Proposition 14 of [Frege1879] p. 37. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
⊢ ((𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) → (𝜑 → (𝜃 → (𝜓 → (𝜒 → 𝜏))))) | ||
Theorem | frege19 43786 | A closed form of syl6 35. Proposition 19 of [Frege1879] p. 39. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
⊢ ((𝜑 → (𝜓 → 𝜒)) → ((𝜒 → 𝜃) → (𝜑 → (𝜓 → 𝜃)))) | ||
Theorem | frege23 43787 | Syllogism followed by rotation of three antecedents. Proposition 23 of [Frege1879] p. 42. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
⊢ ((𝜑 → (𝜓 → (𝜒 → 𝜃))) → ((𝜏 → 𝜑) → (𝜓 → (𝜒 → (𝜏 → 𝜃))))) | ||
Theorem | frege15 43788 | A closed form of com4r 94. Proposition 15 of [Frege1879] p. 38. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
⊢ ((𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) → (𝜃 → (𝜑 → (𝜓 → (𝜒 → 𝜏))))) | ||
Theorem | frege21 43789 | Replace antecedent in antecedent. Proposition 21 of [Frege1879] p. 40. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
⊢ (((𝜑 → 𝜓) → 𝜒) → ((𝜑 → 𝜃) → ((𝜃 → 𝜓) → 𝜒))) | ||
Theorem | frege20 43790 | A closed form of syl8 76. Proposition 20 of [Frege1879] p. 40. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
⊢ ((𝜑 → (𝜓 → (𝜒 → 𝜃))) → ((𝜃 → 𝜏) → (𝜑 → (𝜓 → (𝜒 → 𝜏))))) | ||
Theorem | axfrege28 43791 | Contraposition. Identical to con3 153. Theorem *2.16 of [WhiteheadRussell] p. 103. (Contributed by RP, 24-Dec-2019.) |
⊢ ((𝜑 → 𝜓) → (¬ 𝜓 → ¬ 𝜑)) | ||
Axiom | ax-frege28 43792 | Contraposition. Identical to con3 153. Theorem *2.16 of [WhiteheadRussell] p. 103. Axiom 28 of [Frege1879] p. 43. (Contributed by RP, 24-Dec-2019.) (New usage is discouraged.) |
⊢ ((𝜑 → 𝜓) → (¬ 𝜓 → ¬ 𝜑)) | ||
Theorem | frege29 43793 | Closed form of con3d 152. Proposition 29 of [Frege1879] p. 43. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
⊢ ((𝜑 → (𝜓 → 𝜒)) → (𝜑 → (¬ 𝜒 → ¬ 𝜓))) | ||
Theorem | frege30 43794 | Commuted, closed form of con3d 152. Proposition 30 of [Frege1879] p. 44. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
⊢ ((𝜑 → (𝜓 → 𝜒)) → (𝜓 → (¬ 𝜒 → ¬ 𝜑))) | ||
Theorem | axfrege31 43795 | Identical to notnotr 130. Axiom 31 of [Frege1879] p. 44. (Contributed by RP, 24-Dec-2019.) |
⊢ (¬ ¬ 𝜑 → 𝜑) | ||
Axiom | ax-frege31 43796 | 𝜑 cannot be denied and (at the same time ) ¬ ¬ 𝜑 affirmed. Duplex negatio affirmat. The denial of the denial is affirmation. Identical to notnotr 130. Axiom 31 of [Frege1879] p. 44. (Contributed by RP, 24-Dec-2019.) (New usage is discouraged.) |
⊢ (¬ ¬ 𝜑 → 𝜑) | ||
Theorem | frege32 43797 | Deduce con1 146 from con3 153. Proposition 32 of [Frege1879] p. 44. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
⊢ (((¬ 𝜑 → 𝜓) → (¬ 𝜓 → ¬ ¬ 𝜑)) → ((¬ 𝜑 → 𝜓) → (¬ 𝜓 → 𝜑))) | ||
Theorem | frege33 43798 | If 𝜑 or 𝜓 takes place, then 𝜓 or 𝜑 takes place. Identical to con1 146. Proposition 33 of [Frege1879] p. 44. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
⊢ ((¬ 𝜑 → 𝜓) → (¬ 𝜓 → 𝜑)) | ||
Theorem | frege34 43799 | If as a consequence of the occurrence of the circumstance 𝜑, when the obstacle 𝜓 is removed, 𝜒 takes place, then from the circumstance that 𝜒 does not take place while 𝜑 occurs the occurrence of the obstacle 𝜓 can be inferred. Closed form of con1d 145. Proposition 34 of [Frege1879] p. 45. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
⊢ ((𝜑 → (¬ 𝜓 → 𝜒)) → (𝜑 → (¬ 𝜒 → 𝜓))) | ||
Theorem | frege35 43800 | Commuted, closed form of con1d 145. Proposition 35 of [Frege1879] p. 45. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
⊢ ((𝜑 → (¬ 𝜓 → 𝜒)) → (¬ 𝜒 → (𝜑 → 𝜓))) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |