Home | Metamath
Proof Explorer Theorem List (p. 438 of 464) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | Metamath Proof Explorer
(1-29181) |
Hilbert Space Explorer
(29182-30704) |
Users' Mathboxes
(30705-46395) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | etransclem36 43701* | The 𝑁-th derivative of 𝐹 applied to 𝐽 is an integer. (Contributed by Glauco Siliprandi, 5-Apr-2020.) |
⊢ (𝜑 → 𝑆 ∈ {ℝ, ℂ}) & ⊢ (𝜑 → 𝑋 ∈ ((TopOpen‘ℂfld) ↾t 𝑆)) & ⊢ (𝜑 → 𝑃 ∈ ℕ) & ⊢ (𝜑 → 𝑀 ∈ ℕ0) & ⊢ 𝐹 = (𝑥 ∈ 𝑋 ↦ ((𝑥↑(𝑃 − 1)) · ∏𝑗 ∈ (1...𝑀)((𝑥 − 𝑗)↑𝑃))) & ⊢ (𝜑 → 𝑁 ∈ ℕ0) & ⊢ 𝐻 = (𝑗 ∈ (0...𝑀) ↦ (𝑥 ∈ 𝑋 ↦ ((𝑥 − 𝑗)↑if(𝑗 = 0, (𝑃 − 1), 𝑃)))) & ⊢ (𝜑 → 𝐽 ∈ 𝑋) & ⊢ (𝜑 → 𝐽 ∈ ℤ) & ⊢ 𝐶 = (𝑛 ∈ ℕ0 ↦ {𝑐 ∈ ((0...𝑛) ↑m (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐‘𝑗) = 𝑛}) ⇒ ⊢ (𝜑 → (((𝑆 D𝑛 𝐹)‘𝑁)‘𝐽) ∈ ℤ) | ||
Theorem | etransclem37 43702* | (𝑃 − 1) factorial divides the 𝑁-th derivative of 𝐹 applied to 𝐽. (Contributed by Glauco Siliprandi, 5-Apr-2020.) |
⊢ (𝜑 → 𝑆 ∈ {ℝ, ℂ}) & ⊢ (𝜑 → 𝑋 ∈ ((TopOpen‘ℂfld) ↾t 𝑆)) & ⊢ (𝜑 → 𝑃 ∈ ℕ) & ⊢ (𝜑 → 𝑀 ∈ ℕ0) & ⊢ 𝐹 = (𝑥 ∈ 𝑋 ↦ ((𝑥↑(𝑃 − 1)) · ∏𝑗 ∈ (1...𝑀)((𝑥 − 𝑗)↑𝑃))) & ⊢ (𝜑 → 𝑁 ∈ ℕ0) & ⊢ 𝐻 = (𝑗 ∈ (0...𝑀) ↦ (𝑥 ∈ 𝑋 ↦ ((𝑥 − 𝑗)↑if(𝑗 = 0, (𝑃 − 1), 𝑃)))) & ⊢ 𝐶 = (𝑛 ∈ ℕ0 ↦ {𝑐 ∈ ((0...𝑛) ↑m (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐‘𝑗) = 𝑛}) & ⊢ (𝜑 → 𝐽 ∈ (0...𝑀)) & ⊢ (𝜑 → 𝐽 ∈ 𝑋) ⇒ ⊢ (𝜑 → (!‘(𝑃 − 1)) ∥ (((𝑆 D𝑛 𝐹)‘𝑁)‘𝐽)) | ||
Theorem | etransclem38 43703* | 𝑃 divides the I -th derivative of 𝐹 applied to 𝐽. if it is not the case that 𝐼 = 𝑃 − 1 and 𝐽 = 0. This is case 1 and the second part of case 2 proven in in [Juillerat] p. 13 . (Contributed by Glauco Siliprandi, 5-Apr-2020.) |
⊢ (𝜑 → 𝑃 ∈ ℕ) & ⊢ (𝜑 → 𝑀 ∈ ℕ0) & ⊢ 𝐹 = (𝑥 ∈ ℝ ↦ ((𝑥↑(𝑃 − 1)) · ∏𝑗 ∈ (1...𝑀)((𝑥 − 𝑗)↑𝑃))) & ⊢ (𝜑 → 𝐼 ∈ ℕ0) & ⊢ (𝜑 → 𝐽 ∈ (0...𝑀)) & ⊢ (𝜑 → ¬ (𝐼 = (𝑃 − 1) ∧ 𝐽 = 0)) & ⊢ 𝐶 = (𝑛 ∈ ℕ0 ↦ {𝑐 ∈ ((0...𝑛) ↑m (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐‘𝑗) = 𝑛}) ⇒ ⊢ (𝜑 → 𝑃 ∥ ((((ℝ D𝑛 𝐹)‘𝐼)‘𝐽) / (!‘(𝑃 − 1)))) | ||
Theorem | etransclem39 43704* | 𝐺 is a function. (Contributed by Glauco Siliprandi, 5-Apr-2020.) |
⊢ (𝜑 → 𝑃 ∈ ℕ) & ⊢ (𝜑 → 𝑀 ∈ ℕ0) & ⊢ 𝐹 = (𝑥 ∈ ℝ ↦ ((𝑥↑(𝑃 − 1)) · ∏𝑗 ∈ (1...𝑀)((𝑥 − 𝑗)↑𝑃))) & ⊢ 𝐺 = (𝑥 ∈ ℝ ↦ Σ𝑖 ∈ (0...𝑅)(((ℝ D𝑛 𝐹)‘𝑖)‘𝑥)) ⇒ ⊢ (𝜑 → 𝐺:ℝ⟶ℂ) | ||
Theorem | etransclem40 43705* | The 𝑁-th derivative of 𝐹 is continuous. (Contributed by Glauco Siliprandi, 5-Apr-2020.) |
⊢ (𝜑 → 𝑆 ∈ {ℝ, ℂ}) & ⊢ (𝜑 → 𝑋 ∈ ((TopOpen‘ℂfld) ↾t 𝑆)) & ⊢ (𝜑 → 𝑃 ∈ ℕ) & ⊢ (𝜑 → 𝑀 ∈ ℕ0) & ⊢ 𝐹 = (𝑥 ∈ 𝑋 ↦ ((𝑥↑(𝑃 − 1)) · ∏𝑘 ∈ (1...𝑀)((𝑥 − 𝑘)↑𝑃))) & ⊢ (𝜑 → 𝑁 ∈ ℕ0) ⇒ ⊢ (𝜑 → ((𝑆 D𝑛 𝐹)‘𝑁) ∈ (𝑋–cn→ℂ)) | ||
Theorem | etransclem41 43706* | 𝑃 does not divide the P-1 -th derivative of 𝐹 applied to 0. This is the first part of case 2: proven in in [Juillerat] p. 13 . (Contributed by Glauco Siliprandi, 5-Apr-2020.) |
⊢ (𝜑 → 𝑀 ∈ ℕ0) & ⊢ (𝜑 → 𝑃 ∈ ℙ) & ⊢ (𝜑 → (!‘𝑀) < 𝑃) & ⊢ 𝐹 = (𝑥 ∈ ℝ ↦ ((𝑥↑(𝑃 − 1)) · ∏𝑗 ∈ (1...𝑀)((𝑥 − 𝑗)↑𝑃))) ⇒ ⊢ (𝜑 → ¬ 𝑃 ∥ ((((ℝ D𝑛 𝐹)‘(𝑃 − 1))‘0) / (!‘(𝑃 − 1)))) | ||
Theorem | etransclem42 43707* | The 𝑁-th derivative of 𝐹 applied to 𝐽 is an integer. (Contributed by Glauco Siliprandi, 5-Apr-2020.) |
⊢ (𝜑 → 𝑆 ∈ {ℝ, ℂ}) & ⊢ (𝜑 → 𝑋 ∈ ((TopOpen‘ℂfld) ↾t 𝑆)) & ⊢ (𝜑 → 𝑃 ∈ ℕ) & ⊢ (𝜑 → 𝑀 ∈ ℕ0) & ⊢ 𝐹 = (𝑥 ∈ 𝑋 ↦ ((𝑥↑(𝑃 − 1)) · ∏𝑗 ∈ (1...𝑀)((𝑥 − 𝑗)↑𝑃))) & ⊢ (𝜑 → 𝑁 ∈ ℕ0) & ⊢ (𝜑 → 𝐽 ∈ 𝑋) & ⊢ (𝜑 → 𝐽 ∈ ℤ) ⇒ ⊢ (𝜑 → (((𝑆 D𝑛 𝐹)‘𝑁)‘𝐽) ∈ ℤ) | ||
Theorem | etransclem43 43708* | 𝐺 is a continuous function. (Contributed by Glauco Siliprandi, 5-Apr-2020.) |
⊢ (𝜑 → 𝑆 ∈ {ℝ, ℂ}) & ⊢ (𝜑 → 𝑋 ∈ ((TopOpen‘ℂfld) ↾t 𝑆)) & ⊢ (𝜑 → 𝑃 ∈ ℕ) & ⊢ (𝜑 → 𝑀 ∈ ℕ0) & ⊢ 𝐹 = (𝑥 ∈ 𝑋 ↦ ((𝑥↑(𝑃 − 1)) · ∏𝑗 ∈ (1...𝑀)((𝑥 − 𝑗)↑𝑃))) & ⊢ 𝐺 = (𝑥 ∈ 𝑋 ↦ Σ𝑖 ∈ (0...𝑅)(((𝑆 D𝑛 𝐹)‘𝑖)‘𝑥)) ⇒ ⊢ (𝜑 → 𝐺 ∈ (𝑋–cn→ℂ)) | ||
Theorem | etransclem44 43709* | The given finite sum is nonzero. This is the claim proved after equation (7) in [Juillerat] p. 12 . (Contributed by Glauco Siliprandi, 5-Apr-2020.) |
⊢ (𝜑 → 𝐴:ℕ0⟶ℤ) & ⊢ (𝜑 → (𝐴‘0) ≠ 0) & ⊢ (𝜑 → 𝑀 ∈ ℕ0) & ⊢ (𝜑 → 𝑃 ∈ ℙ) & ⊢ (𝜑 → (abs‘(𝐴‘0)) < 𝑃) & ⊢ (𝜑 → (!‘𝑀) < 𝑃) & ⊢ 𝐹 = (𝑥 ∈ ℝ ↦ ((𝑥↑(𝑃 − 1)) · ∏𝑗 ∈ (1...𝑀)((𝑥 − 𝑗)↑𝑃))) & ⊢ 𝐾 = (Σ𝑘 ∈ ((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1))))((𝐴‘(1st ‘𝑘)) · (((ℝ D𝑛 𝐹)‘(2nd ‘𝑘))‘(1st ‘𝑘))) / (!‘(𝑃 − 1))) ⇒ ⊢ (𝜑 → 𝐾 ≠ 0) | ||
Theorem | etransclem45 43710* | 𝐾 is an integer. (Contributed by Glauco Siliprandi, 5-Apr-2020.) |
⊢ (𝜑 → 𝑃 ∈ ℕ) & ⊢ (𝜑 → 𝑀 ∈ ℕ0) & ⊢ 𝐹 = (𝑥 ∈ ℝ ↦ ((𝑥↑(𝑃 − 1)) · ∏𝑗 ∈ (1...𝑀)((𝑥 − 𝑗)↑𝑃))) & ⊢ (𝜑 → 𝐴:ℕ0⟶ℤ) & ⊢ 𝐾 = (Σ𝑘 ∈ ((0...𝑀) × (0...𝑅))((𝐴‘(1st ‘𝑘)) · (((ℝ D𝑛 𝐹)‘(2nd ‘𝑘))‘(1st ‘𝑘))) / (!‘(𝑃 − 1))) ⇒ ⊢ (𝜑 → 𝐾 ∈ ℤ) | ||
Theorem | etransclem46 43711* | This is the proof for equation *(7) in [Juillerat] p. 12. The proven equality will lead to a contradiction, because the left-hand side goes to 0 for large 𝑃, but the right-hand side is a nonzero integer. (Contributed by Glauco Siliprandi, 5-Apr-2020.) |
⊢ (𝜑 → 𝑄 ∈ ((Poly‘ℤ) ∖ {0𝑝})) & ⊢ (𝜑 → (𝑄‘e) = 0) & ⊢ 𝐴 = (coeff‘𝑄) & ⊢ 𝑀 = (deg‘𝑄) & ⊢ (𝜑 → ℝ ⊆ ℝ) & ⊢ (𝜑 → ℝ ∈ {ℝ, ℂ}) & ⊢ (𝜑 → ℝ ∈ ((TopOpen‘ℂfld) ↾t ℝ)) & ⊢ (𝜑 → 𝑃 ∈ ℕ) & ⊢ 𝐹 = (𝑥 ∈ ℝ ↦ ((𝑥↑(𝑃 − 1)) · ∏𝑗 ∈ (1...𝑀)((𝑥 − 𝑗)↑𝑃))) & ⊢ 𝐿 = Σ𝑗 ∈ (0...𝑀)(((𝐴‘𝑗) · (e↑𝑐𝑗)) · ∫(0(,)𝑗)((e↑𝑐-𝑥) · (𝐹‘𝑥)) d𝑥) & ⊢ 𝑅 = ((𝑀 · 𝑃) + (𝑃 − 1)) & ⊢ 𝐺 = (𝑥 ∈ ℝ ↦ Σ𝑖 ∈ (0...𝑅)(((ℝ D𝑛 𝐹)‘𝑖)‘𝑥)) & ⊢ 𝑂 = (𝑥 ∈ (0[,]𝑗) ↦ -((e↑𝑐-𝑥) · (𝐺‘𝑥))) ⇒ ⊢ (𝜑 → (𝐿 / (!‘(𝑃 − 1))) = (-Σ𝑘 ∈ ((0...𝑀) × (0...𝑅))((𝐴‘(1st ‘𝑘)) · (((ℝ D𝑛 𝐹)‘(2nd ‘𝑘))‘(1st ‘𝑘))) / (!‘(𝑃 − 1)))) | ||
Theorem | etransclem47 43712* | e is transcendental. Section *5 of [Juillerat] p. 11 can be used as a reference for this proof. (Contributed by Glauco Siliprandi, 5-Apr-2020.) |
⊢ (𝜑 → 𝑄 ∈ ((Poly‘ℤ) ∖ {0𝑝})) & ⊢ (𝜑 → (𝑄‘e) = 0) & ⊢ 𝐴 = (coeff‘𝑄) & ⊢ (𝜑 → (𝐴‘0) ≠ 0) & ⊢ 𝑀 = (deg‘𝑄) & ⊢ (𝜑 → 𝑃 ∈ ℙ) & ⊢ (𝜑 → (abs‘(𝐴‘0)) < 𝑃) & ⊢ (𝜑 → (!‘𝑀) < 𝑃) & ⊢ (𝜑 → (Σ𝑗 ∈ (0...𝑀)((abs‘((𝐴‘𝑗) · (e↑𝑐𝑗))) · (𝑀 · (𝑀↑(𝑀 + 1)))) · (((𝑀↑(𝑀 + 1))↑(𝑃 − 1)) / (!‘(𝑃 − 1)))) < 1) & ⊢ 𝐹 = (𝑥 ∈ ℝ ↦ ((𝑥↑(𝑃 − 1)) · ∏𝑗 ∈ (1...𝑀)((𝑥 − 𝑗)↑𝑃))) & ⊢ 𝐿 = Σ𝑗 ∈ (0...𝑀)(((𝐴‘𝑗) · (e↑𝑐𝑗)) · ∫(0(,)𝑗)((e↑𝑐-𝑥) · (𝐹‘𝑥)) d𝑥) & ⊢ 𝐾 = (𝐿 / (!‘(𝑃 − 1))) ⇒ ⊢ (𝜑 → ∃𝑘 ∈ ℤ (𝑘 ≠ 0 ∧ (abs‘𝑘) < 1)) | ||
Theorem | etransclem48 43713* | e is transcendental. Section *5 of [Juillerat] p. 11 can be used as a reference for this proof. In this lemma, a large enough prime 𝑝 is chosen: it will be used by subsequent lemmas. (Contributed by Glauco Siliprandi, 5-Apr-2020.) (Revised by AV, 28-Sep-2020.) |
⊢ (𝜑 → 𝑄 ∈ ((Poly‘ℤ) ∖ {0𝑝})) & ⊢ (𝜑 → (𝑄‘e) = 0) & ⊢ 𝐴 = (coeff‘𝑄) & ⊢ (𝜑 → (𝐴‘0) ≠ 0) & ⊢ 𝑀 = (deg‘𝑄) & ⊢ 𝐶 = Σ𝑗 ∈ (0...𝑀)((abs‘((𝐴‘𝑗) · (e↑𝑐𝑗))) · (𝑀 · (𝑀↑(𝑀 + 1)))) & ⊢ 𝑆 = (𝑛 ∈ ℕ0 ↦ (𝐶 · (((𝑀↑(𝑀 + 1))↑𝑛) / (!‘𝑛)))) & ⊢ 𝐼 = inf({𝑖 ∈ ℕ0 ∣ ∀𝑛 ∈ (ℤ≥‘𝑖)(abs‘(𝑆‘𝑛)) < 1}, ℝ, < ) & ⊢ 𝑇 = sup({(abs‘(𝐴‘0)), (!‘𝑀), 𝐼}, ℝ*, < ) ⇒ ⊢ (𝜑 → ∃𝑘 ∈ ℤ (𝑘 ≠ 0 ∧ (abs‘𝑘) < 1)) | ||
Theorem | etransc 43714 | e is transcendental. Section *5 of [Juillerat] p. 11 can be used as a reference for this proof. (Contributed by Glauco Siliprandi, 5-Apr-2020.) (Proof shortened by AV, 28-Sep-2020.) |
⊢ e ∈ (ℂ ∖ 𝔸) | ||
Theorem | rrxtopn 43715* | The topology of the generalized real Euclidean space. (Contributed by Glauco Siliprandi, 24-Dec-2020.) |
⊢ (𝜑 → 𝐼 ∈ 𝑉) ⇒ ⊢ (𝜑 → (TopOpen‘(ℝ^‘𝐼)) = (MetOpen‘(𝑓 ∈ (Base‘(ℝ^‘𝐼)), 𝑔 ∈ (Base‘(ℝ^‘𝐼)) ↦ (√‘(ℝfld Σg (𝑥 ∈ 𝐼 ↦ (((𝑓‘𝑥) − (𝑔‘𝑥))↑2))))))) | ||
Theorem | rrxngp 43716 | Generalized Euclidean real spaces are normed groups. (Contributed by Glauco Siliprandi, 24-Dec-2020.) |
⊢ (𝐼 ∈ 𝑉 → (ℝ^‘𝐼) ∈ NrmGrp) | ||
Theorem | rrxtps 43717 | Generalized Euclidean real spaces are topological spaces. (Contributed by Glauco Siliprandi, 24-Dec-2020.) |
⊢ (𝐼 ∈ 𝑉 → (ℝ^‘𝐼) ∈ TopSp) | ||
Theorem | rrxtopnfi 43718* | The topology of the n-dimensional real Euclidean space. (Contributed by Glauco Siliprandi, 24-Dec-2020.) |
⊢ (𝜑 → 𝐼 ∈ Fin) ⇒ ⊢ (𝜑 → (TopOpen‘(ℝ^‘𝐼)) = (MetOpen‘(𝑓 ∈ (ℝ ↑m 𝐼), 𝑔 ∈ (ℝ ↑m 𝐼) ↦ (√‘Σ𝑘 ∈ 𝐼 (((𝑓‘𝑘) − (𝑔‘𝑘))↑2))))) | ||
Theorem | rrxtopon 43719 | The topology on generalized Euclidean real spaces. (Contributed by Glauco Siliprandi, 24-Dec-2020.) |
⊢ 𝐽 = (TopOpen‘(ℝ^‘𝐼)) ⇒ ⊢ (𝐼 ∈ 𝑉 → 𝐽 ∈ (TopOn‘(Base‘(ℝ^‘𝐼)))) | ||
Theorem | rrxtop 43720 | The topology on generalized Euclidean real spaces. (Contributed by Glauco Siliprandi, 24-Dec-2020.) |
⊢ 𝐽 = (TopOpen‘(ℝ^‘𝐼)) ⇒ ⊢ (𝐼 ∈ 𝑉 → 𝐽 ∈ Top) | ||
Theorem | rrndistlt 43721* | Given two points in the space of n-dimensional real numbers, if every component is closer than 𝐸 then the distance between the two points is less then ((√‘𝑛) · 𝐸). (Contributed by Glauco Siliprandi, 24-Dec-2020.) |
⊢ (𝜑 → 𝐼 ∈ Fin) & ⊢ (𝜑 → 𝐼 ≠ ∅) & ⊢ 𝑁 = (♯‘𝐼) & ⊢ (𝜑 → 𝑋 ∈ (ℝ ↑m 𝐼)) & ⊢ (𝜑 → 𝑌 ∈ (ℝ ↑m 𝐼)) & ⊢ ((𝜑 ∧ 𝑖 ∈ 𝐼) → (abs‘((𝑋‘𝑖) − (𝑌‘𝑖))) < 𝐸) & ⊢ (𝜑 → 𝐸 ∈ ℝ+) & ⊢ 𝐷 = (dist‘(ℝ^‘𝐼)) ⇒ ⊢ (𝜑 → (𝑋𝐷𝑌) < ((√‘𝑁) · 𝐸)) | ||
Theorem | rrxtoponfi 43722 | The topology on n-dimensional Euclidean real spaces. (Contributed by Glauco Siliprandi, 24-Dec-2020.) |
⊢ 𝐽 = (TopOpen‘(ℝ^‘𝐼)) ⇒ ⊢ (𝐼 ∈ Fin → 𝐽 ∈ (TopOn‘(ℝ ↑m 𝐼))) | ||
Theorem | rrxunitopnfi 43723 | The base set of the standard topology on the space of n-dimensional Real numbers. (Contributed by Glauco Siliprandi, 24-Dec-2020.) |
⊢ (𝑋 ∈ Fin → ∪ (TopOpen‘(ℝ^‘𝑋)) = (ℝ ↑m 𝑋)) | ||
Theorem | rrxtopn0 43724 | The topology of the zero-dimensional real Euclidean space. (Contributed by Glauco Siliprandi, 24-Dec-2020.) |
⊢ (TopOpen‘(ℝ^‘∅)) = 𝒫 {∅} | ||
Theorem | qndenserrnbllem 43725* | n-dimensional rational numbers are dense in the space of n-dimensional real numbers, with respect to the n-dimensional standard topology. (Contributed by Glauco Siliprandi, 24-Dec-2020.) |
⊢ (𝜑 → 𝐼 ∈ Fin) & ⊢ (𝜑 → 𝐼 ≠ ∅) & ⊢ (𝜑 → 𝑋 ∈ (ℝ ↑m 𝐼)) & ⊢ 𝐷 = (dist‘(ℝ^‘𝐼)) & ⊢ (𝜑 → 𝐸 ∈ ℝ+) ⇒ ⊢ (𝜑 → ∃𝑦 ∈ (ℚ ↑m 𝐼)𝑦 ∈ (𝑋(ball‘𝐷)𝐸)) | ||
Theorem | qndenserrnbl 43726* | n-dimensional rational numbers are dense in the space of n-dimensional real numbers, with respect to the n-dimensional standard topology. (Contributed by Glauco Siliprandi, 24-Dec-2020.) |
⊢ (𝜑 → 𝐼 ∈ Fin) & ⊢ (𝜑 → 𝑋 ∈ (ℝ ↑m 𝐼)) & ⊢ 𝐷 = (dist‘(ℝ^‘𝐼)) & ⊢ (𝜑 → 𝐸 ∈ ℝ+) ⇒ ⊢ (𝜑 → ∃𝑦 ∈ (ℚ ↑m 𝐼)𝑦 ∈ (𝑋(ball‘𝐷)𝐸)) | ||
Theorem | rrxtopn0b 43727 | The topology of the zero-dimensional real Euclidean space. (Contributed by Glauco Siliprandi, 24-Dec-2020.) |
⊢ (TopOpen‘(ℝ^‘∅)) = {∅, {∅}} | ||
Theorem | qndenserrnopnlem 43728* | n-dimensional rational numbers are dense in the space of n-dimensional real numbers, with respect to the n-dimensional standard topology. (Contributed by Glauco Siliprandi, 24-Dec-2020.) |
⊢ (𝜑 → 𝐼 ∈ Fin) & ⊢ 𝐽 = (TopOpen‘(ℝ^‘𝐼)) & ⊢ (𝜑 → 𝑉 ∈ 𝐽) & ⊢ (𝜑 → 𝑋 ∈ 𝑉) & ⊢ 𝐷 = (dist‘(ℝ^‘𝐼)) ⇒ ⊢ (𝜑 → ∃𝑦 ∈ (ℚ ↑m 𝐼)𝑦 ∈ 𝑉) | ||
Theorem | qndenserrnopn 43729* | n-dimensional rational numbers are dense in the space of n-dimensional real numbers, with respect to the n-dimensional standard topology. (Contributed by Glauco Siliprandi, 24-Dec-2020.) |
⊢ (𝜑 → 𝐼 ∈ Fin) & ⊢ 𝐽 = (TopOpen‘(ℝ^‘𝐼)) & ⊢ (𝜑 → 𝑉 ∈ 𝐽) & ⊢ (𝜑 → 𝑉 ≠ ∅) ⇒ ⊢ (𝜑 → ∃𝑦 ∈ (ℚ ↑m 𝐼)𝑦 ∈ 𝑉) | ||
Theorem | qndenserrn 43730 | n-dimensional rational numbers are dense in the space of n-dimensional real numbers, with respect to the n-dimensional standard topology. (Contributed by Glauco Siliprandi, 24-Dec-2020.) |
⊢ (𝜑 → 𝐼 ∈ Fin) & ⊢ 𝐽 = (TopOpen‘(ℝ^‘𝐼)) ⇒ ⊢ (𝜑 → ((cls‘𝐽)‘(ℚ ↑m 𝐼)) = (ℝ ↑m 𝐼)) | ||
Theorem | rrxsnicc 43731* | A multidimensional singleton expressed as a multidimensional closed interval. (Contributed by Glauco Siliprandi, 8-Apr-2021.) |
⊢ (𝜑 → 𝐴 ∈ (ℝ ↑m 𝑋)) ⇒ ⊢ (𝜑 → X𝑘 ∈ 𝑋 ((𝐴‘𝑘)[,](𝐴‘𝑘)) = {𝐴}) | ||
Theorem | rrnprjdstle 43732 | The distance between two points in Euclidean space is greater than the distance between the projections onto one coordinate. (Contributed by Glauco Siliprandi, 8-Apr-2021.) |
⊢ (𝜑 → 𝑋 ∈ Fin) & ⊢ (𝜑 → 𝐹:𝑋⟶ℝ) & ⊢ (𝜑 → 𝐺:𝑋⟶ℝ) & ⊢ (𝜑 → 𝐼 ∈ 𝑋) & ⊢ 𝐷 = (dist‘(ℝ^‘𝑋)) ⇒ ⊢ (𝜑 → (abs‘((𝐹‘𝐼) − (𝐺‘𝐼))) ≤ (𝐹𝐷𝐺)) | ||
Theorem | rrndsmet 43733* | 𝐷 is a metric for the n-dimensional real Euclidean space. (Contributed by Glauco Siliprandi, 8-Apr-2021.) |
⊢ (𝜑 → 𝑋 ∈ Fin) & ⊢ 𝐷 = (𝑓 ∈ (ℝ ↑m 𝑋), 𝑔 ∈ (ℝ ↑m 𝑋) ↦ (√‘Σ𝑘 ∈ 𝑋 (((𝑓‘𝑘) − (𝑔‘𝑘))↑2))) ⇒ ⊢ (𝜑 → 𝐷 ∈ (Met‘(ℝ ↑m 𝑋))) | ||
Theorem | rrndsxmet 43734* | 𝐷 is an extended metric for the n-dimensional real Euclidean space. (Contributed by Glauco Siliprandi, 8-Apr-2021.) |
⊢ (𝜑 → 𝑋 ∈ Fin) & ⊢ 𝐷 = (𝑓 ∈ (ℝ ↑m 𝑋), 𝑔 ∈ (ℝ ↑m 𝑋) ↦ (√‘Σ𝑘 ∈ 𝑋 (((𝑓‘𝑘) − (𝑔‘𝑘))↑2))) ⇒ ⊢ (𝜑 → 𝐷 ∈ (∞Met‘(ℝ ↑m 𝑋))) | ||
Theorem | ioorrnopnlem 43735* | The a point in an indexed product of open intervals is contained in an open ball that is contained in the indexed product of open intervals. (Contributed by Glauco Siliprandi, 8-Apr-2021.) |
⊢ (𝜑 → 𝑋 ∈ Fin) & ⊢ (𝜑 → 𝑋 ≠ ∅) & ⊢ (𝜑 → 𝐴:𝑋⟶ℝ) & ⊢ (𝜑 → 𝐵:𝑋⟶ℝ) & ⊢ (𝜑 → 𝐹 ∈ X𝑖 ∈ 𝑋 ((𝐴‘𝑖)(,)(𝐵‘𝑖))) & ⊢ 𝐻 = ran (𝑖 ∈ 𝑋 ↦ if(((𝐵‘𝑖) − (𝐹‘𝑖)) ≤ ((𝐹‘𝑖) − (𝐴‘𝑖)), ((𝐵‘𝑖) − (𝐹‘𝑖)), ((𝐹‘𝑖) − (𝐴‘𝑖)))) & ⊢ 𝐸 = inf(𝐻, ℝ, < ) & ⊢ 𝑉 = (𝐹(ball‘𝐷)𝐸) & ⊢ 𝐷 = (𝑓 ∈ (ℝ ↑m 𝑋), 𝑔 ∈ (ℝ ↑m 𝑋) ↦ (√‘Σ𝑘 ∈ 𝑋 (((𝑓‘𝑘) − (𝑔‘𝑘))↑2))) ⇒ ⊢ (𝜑 → ∃𝑣 ∈ (TopOpen‘(ℝ^‘𝑋))(𝐹 ∈ 𝑣 ∧ 𝑣 ⊆ X𝑖 ∈ 𝑋 ((𝐴‘𝑖)(,)(𝐵‘𝑖)))) | ||
Theorem | ioorrnopn 43736* | The indexed product of open intervals is an open set in (ℝ^‘𝑋). (Contributed by Glauco Siliprandi, 8-Apr-2021.) |
⊢ (𝜑 → 𝑋 ∈ Fin) & ⊢ (𝜑 → 𝐴:𝑋⟶ℝ) & ⊢ (𝜑 → 𝐵:𝑋⟶ℝ) ⇒ ⊢ (𝜑 → X𝑖 ∈ 𝑋 ((𝐴‘𝑖)(,)(𝐵‘𝑖)) ∈ (TopOpen‘(ℝ^‘𝑋))) | ||
Theorem | ioorrnopnxrlem 43737* | Given a point 𝐹 that belongs to an indexed product of (possibly unbounded) open intervals, then 𝐹 belongs to an open product of bounded open intervals that's a subset of the original indexed product. (Contributed by Glauco Siliprandi, 8-Apr-2021.) |
⊢ (𝜑 → 𝑋 ∈ Fin) & ⊢ (𝜑 → 𝐴:𝑋⟶ℝ*) & ⊢ (𝜑 → 𝐵:𝑋⟶ℝ*) & ⊢ (𝜑 → 𝐹 ∈ X𝑖 ∈ 𝑋 ((𝐴‘𝑖)(,)(𝐵‘𝑖))) & ⊢ 𝐿 = (𝑖 ∈ 𝑋 ↦ if((𝐴‘𝑖) = -∞, ((𝐹‘𝑖) − 1), (𝐴‘𝑖))) & ⊢ 𝑅 = (𝑖 ∈ 𝑋 ↦ if((𝐵‘𝑖) = +∞, ((𝐹‘𝑖) + 1), (𝐵‘𝑖))) & ⊢ 𝑉 = X𝑖 ∈ 𝑋 ((𝐿‘𝑖)(,)(𝑅‘𝑖)) ⇒ ⊢ (𝜑 → ∃𝑣 ∈ (TopOpen‘(ℝ^‘𝑋))(𝐹 ∈ 𝑣 ∧ 𝑣 ⊆ X𝑖 ∈ 𝑋 ((𝐴‘𝑖)(,)(𝐵‘𝑖)))) | ||
Theorem | ioorrnopnxr 43738* | The indexed product of open intervals is an open set in (ℝ^‘𝑋). Similar to ioorrnopn 43736 but here unbounded intervals are allowed. (Contributed by Glauco Siliprandi, 8-Apr-2021.) |
⊢ (𝜑 → 𝑋 ∈ Fin) & ⊢ (𝜑 → 𝐴:𝑋⟶ℝ*) & ⊢ (𝜑 → 𝐵:𝑋⟶ℝ*) ⇒ ⊢ (𝜑 → X𝑖 ∈ 𝑋 ((𝐴‘𝑖)(,)(𝐵‘𝑖)) ∈ (TopOpen‘(ℝ^‘𝑋))) | ||
Proofs for most of the theorems in section 111 of [Fremlin1] | ||
Syntax | csalg 43739 | Extend class notation with the class of all sigma-algebras. |
class SAlg | ||
Definition | df-salg 43740* | Define the class of sigma-algebras. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
⊢ SAlg = {𝑥 ∣ (∅ ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 (∪ 𝑥 ∖ 𝑦) ∈ 𝑥 ∧ ∀𝑦 ∈ 𝒫 𝑥(𝑦 ≼ ω → ∪ 𝑦 ∈ 𝑥))} | ||
Syntax | csalon 43741 | Extend class notation with the class of sigma-algebras on a set. |
class SalOn | ||
Definition | df-salon 43742* | Define the set of sigma-algebra on a given set. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
⊢ SalOn = (𝑥 ∈ V ↦ {𝑠 ∈ SAlg ∣ ∪ 𝑠 = 𝑥}) | ||
Syntax | csalgen 43743 | Extend class notation with the class of sigma-algebra generator. |
class SalGen | ||
Definition | df-salgen 43744* | Define the sigma-algebra generated by a given set. Definition 111G (b) of [Fremlin1] p. 13. The sigma-algebra generated by a set is the smallest sigma-algebra, on the same base set, that includes the set, see dfsalgen2 43770. The base set of the sigma-algebras used for the intersection needs to be the same, otherwise the resulting set is not guaranteed to be a sigma-algebra, as shown in the counterexample salgencntex 43772. (Contributed by Glauco Siliprandi, 17-Aug-2020.) (Revised by Glauco Siliprandi, 1-Jan-2021.) |
⊢ SalGen = (𝑥 ∈ V ↦ ∩ {𝑠 ∈ SAlg ∣ (∪ 𝑠 = ∪ 𝑥 ∧ 𝑥 ⊆ 𝑠)}) | ||
Theorem | issal 43745* | Express the predicate "𝑆 is a sigma-algebra." (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
⊢ (𝑆 ∈ 𝑉 → (𝑆 ∈ SAlg ↔ (∅ ∈ 𝑆 ∧ ∀𝑦 ∈ 𝑆 (∪ 𝑆 ∖ 𝑦) ∈ 𝑆 ∧ ∀𝑦 ∈ 𝒫 𝑆(𝑦 ≼ ω → ∪ 𝑦 ∈ 𝑆)))) | ||
Theorem | pwsal 43746 | The power set of a given set is a sigma-algebra (the so called discrete sigma-algebra). (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
⊢ (𝑋 ∈ 𝑉 → 𝒫 𝑋 ∈ SAlg) | ||
Theorem | salunicl 43747 | SAlg sigma-algebra is closed under countable union. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
⊢ (𝜑 → 𝑆 ∈ SAlg) & ⊢ (𝜑 → 𝑇 ∈ 𝒫 𝑆) & ⊢ (𝜑 → 𝑇 ≼ ω) ⇒ ⊢ (𝜑 → ∪ 𝑇 ∈ 𝑆) | ||
Theorem | saluncl 43748 | The union of two sets in a sigma-algebra is in the sigma-algebra. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
⊢ ((𝑆 ∈ SAlg ∧ 𝐸 ∈ 𝑆 ∧ 𝐹 ∈ 𝑆) → (𝐸 ∪ 𝐹) ∈ 𝑆) | ||
Theorem | prsal 43749 | The pair of the empty set and the whole base is a sigma-algebra. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
⊢ (𝑋 ∈ 𝑉 → {∅, 𝑋} ∈ SAlg) | ||
Theorem | saldifcl 43750 | The complement of an element of a sigma-algebra is in the sigma-algebra. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
⊢ ((𝑆 ∈ SAlg ∧ 𝐸 ∈ 𝑆) → (∪ 𝑆 ∖ 𝐸) ∈ 𝑆) | ||
Theorem | 0sal 43751 | The empty set belongs to every sigma-algebra. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
⊢ (𝑆 ∈ SAlg → ∅ ∈ 𝑆) | ||
Theorem | salgenval 43752* | The sigma-algebra generated by a set. (Contributed by Glauco Siliprandi, 3-Jan-2021.) |
⊢ (𝑋 ∈ 𝑉 → (SalGen‘𝑋) = ∩ {𝑠 ∈ SAlg ∣ (∪ 𝑠 = ∪ 𝑋 ∧ 𝑋 ⊆ 𝑠)}) | ||
Theorem | saliuncl 43753* | SAlg sigma-algebra is closed under countable indexed union. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
⊢ (𝜑 → 𝑆 ∈ SAlg) & ⊢ (𝜑 → 𝐾 ≼ ω) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐾) → 𝐸 ∈ 𝑆) ⇒ ⊢ (𝜑 → ∪ 𝑘 ∈ 𝐾 𝐸 ∈ 𝑆) | ||
Theorem | salincl 43754 | The intersection of two sets in a sigma-algebra is in the sigma-algebra. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
⊢ ((𝑆 ∈ SAlg ∧ 𝐸 ∈ 𝑆 ∧ 𝐹 ∈ 𝑆) → (𝐸 ∩ 𝐹) ∈ 𝑆) | ||
Theorem | saluni 43755 | A set is an element of any sigma-algebra on it . (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
⊢ (𝑆 ∈ SAlg → ∪ 𝑆 ∈ 𝑆) | ||
Theorem | saliincl 43756* | SAlg sigma-algebra is closed under countable indexed intersection. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
⊢ (𝜑 → 𝑆 ∈ SAlg) & ⊢ (𝜑 → 𝐾 ≼ ω) & ⊢ (𝜑 → 𝐾 ≠ ∅) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐾) → 𝐸 ∈ 𝑆) ⇒ ⊢ (𝜑 → ∩ 𝑘 ∈ 𝐾 𝐸 ∈ 𝑆) | ||
Theorem | saldifcl2 43757 | The difference of two elements of a sigma-algebra is in the sigma-algebra. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
⊢ ((𝑆 ∈ SAlg ∧ 𝐸 ∈ 𝑆 ∧ 𝐹 ∈ 𝑆) → (𝐸 ∖ 𝐹) ∈ 𝑆) | ||
Theorem | intsaluni 43758* | The union of an arbitrary intersection of sigma-algebras on the same set 𝑋, is 𝑋. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
⊢ (𝜑 → 𝐺 ⊆ SAlg) & ⊢ (𝜑 → 𝐺 ≠ ∅) & ⊢ ((𝜑 ∧ 𝑠 ∈ 𝐺) → ∪ 𝑠 = 𝑋) ⇒ ⊢ (𝜑 → ∪ ∩ 𝐺 = 𝑋) | ||
Theorem | intsal 43759* | The arbitrary intersection of sigma-algebra (on the same set 𝑋) is a sigma-algebra ( on the same set 𝑋, see intsaluni 43758). (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
⊢ (𝜑 → 𝐺 ⊆ SAlg) & ⊢ (𝜑 → 𝐺 ≠ ∅) & ⊢ ((𝜑 ∧ 𝑠 ∈ 𝐺) → ∪ 𝑠 = 𝑋) ⇒ ⊢ (𝜑 → ∩ 𝐺 ∈ SAlg) | ||
Theorem | salgenn0 43760* | The set used in the definition of the generated sigma-algebra, is not empty. (Contributed by Glauco Siliprandi, 3-Jan-2021.) |
⊢ (𝑋 ∈ 𝑉 → {𝑠 ∈ SAlg ∣ (∪ 𝑠 = ∪ 𝑋 ∧ 𝑋 ⊆ 𝑠)} ≠ ∅) | ||
Theorem | salgencl 43761 | SalGen actually generates a sigma-algebra. (Contributed by Glauco Siliprandi, 3-Jan-2021.) |
⊢ (𝑋 ∈ 𝑉 → (SalGen‘𝑋) ∈ SAlg) | ||
Theorem | issald 43762* | Sufficient condition to prove that 𝑆 is sigma-algebra. (Contributed by Glauco Siliprandi, 3-Jan-2021.) |
⊢ (𝜑 → 𝑆 ∈ 𝑉) & ⊢ (𝜑 → ∅ ∈ 𝑆) & ⊢ 𝑋 = ∪ 𝑆 & ⊢ ((𝜑 ∧ 𝑦 ∈ 𝑆) → (𝑋 ∖ 𝑦) ∈ 𝑆) & ⊢ ((𝜑 ∧ 𝑦 ∈ 𝒫 𝑆 ∧ 𝑦 ≼ ω) → ∪ 𝑦 ∈ 𝑆) ⇒ ⊢ (𝜑 → 𝑆 ∈ SAlg) | ||
Theorem | salexct 43763* | An example of nontrivial sigma-algebra: the collection of all subsets which either are countable or have countable complement. (Contributed by Glauco Siliprandi, 3-Jan-2021.) |
⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ 𝑆 = {𝑥 ∈ 𝒫 𝐴 ∣ (𝑥 ≼ ω ∨ (𝐴 ∖ 𝑥) ≼ ω)} ⇒ ⊢ (𝜑 → 𝑆 ∈ SAlg) | ||
Theorem | sssalgen 43764 | A set is a subset of the sigma-algebra it generates. (Contributed by Glauco Siliprandi, 3-Jan-2021.) |
⊢ 𝑆 = (SalGen‘𝑋) ⇒ ⊢ (𝑋 ∈ 𝑉 → 𝑋 ⊆ 𝑆) | ||
Theorem | salgenss 43765 | The sigma-algebra generated by a set is the smallest sigma-algebra, on the same base set, that includes the set. Proposition 111G (b) of [Fremlin1] p. 13. Notice that the condition "on the same base set" is needed, see the counterexample salgensscntex 43773, where a sigma-algebra is shown that includes a set, but does not include the sigma-algebra generated (the key is that its base set is larger than the base set of the generating set). (Contributed by Glauco Siliprandi, 3-Jan-2021.) |
⊢ (𝜑 → 𝑋 ∈ 𝑉) & ⊢ 𝐺 = (SalGen‘𝑋) & ⊢ (𝜑 → 𝑆 ∈ SAlg) & ⊢ (𝜑 → 𝑋 ⊆ 𝑆) & ⊢ (𝜑 → ∪ 𝑆 = ∪ 𝑋) ⇒ ⊢ (𝜑 → 𝐺 ⊆ 𝑆) | ||
Theorem | salgenuni 43766 | The base set of the sigma-algebra generated by a set is the union of the set itself. (Contributed by Glauco Siliprandi, 3-Jan-2021.) |
⊢ (𝜑 → 𝑋 ∈ 𝑉) & ⊢ 𝑆 = (SalGen‘𝑋) & ⊢ 𝑈 = ∪ 𝑋 ⇒ ⊢ (𝜑 → ∪ 𝑆 = 𝑈) | ||
Theorem | issalgend 43767* | One side of dfsalgen2 43770. If a sigma-algebra on ∪ 𝑋 includes 𝑋 and it is included in all the sigma-algebras with such two properties, then it is the sigma-algebra generated by 𝑋. (Contributed by Glauco Siliprandi, 3-Jan-2021.) |
⊢ (𝜑 → 𝑋 ∈ 𝑉) & ⊢ (𝜑 → 𝑆 ∈ SAlg) & ⊢ (𝜑 → ∪ 𝑆 = ∪ 𝑋) & ⊢ (𝜑 → 𝑋 ⊆ 𝑆) & ⊢ ((𝜑 ∧ (𝑦 ∈ SAlg ∧ ∪ 𝑦 = ∪ 𝑋 ∧ 𝑋 ⊆ 𝑦)) → 𝑆 ⊆ 𝑦) ⇒ ⊢ (𝜑 → (SalGen‘𝑋) = 𝑆) | ||
Theorem | salexct2 43768* | An example of a subset that does not belong to a nontrivial sigma-algebra, see salexct 43763. (Contributed by Glauco Siliprandi, 3-Jan-2021.) |
⊢ 𝐴 = (0[,]2) & ⊢ 𝑆 = {𝑥 ∈ 𝒫 𝐴 ∣ (𝑥 ≼ ω ∨ (𝐴 ∖ 𝑥) ≼ ω)} & ⊢ 𝐵 = (0[,]1) ⇒ ⊢ ¬ 𝐵 ∈ 𝑆 | ||
Theorem | unisalgen 43769 | The union of a set belongs to the sigma-algebra generated by the set. (Contributed by Glauco Siliprandi, 3-Jan-2021.) |
⊢ (𝜑 → 𝑋 ∈ 𝑉) & ⊢ 𝑆 = (SalGen‘𝑋) & ⊢ 𝑈 = ∪ 𝑋 ⇒ ⊢ (𝜑 → 𝑈 ∈ 𝑆) | ||
Theorem | dfsalgen2 43770* | Alternate characterization of the sigma-algebra generated by a set. It is the smallest sigma-algebra, on the same base set, that includes the set. (Contributed by Glauco Siliprandi, 3-Jan-2021.) |
⊢ (𝜑 → 𝑋 ∈ 𝑉) ⇒ ⊢ (𝜑 → ((SalGen‘𝑋) = 𝑆 ↔ ((𝑆 ∈ SAlg ∧ ∪ 𝑆 = ∪ 𝑋 ∧ 𝑋 ⊆ 𝑆) ∧ ∀𝑦 ∈ SAlg ((∪ 𝑦 = ∪ 𝑋 ∧ 𝑋 ⊆ 𝑦) → 𝑆 ⊆ 𝑦)))) | ||
Theorem | salexct3 43771* | An example of a sigma-algebra that's not closed under uncountable union. (Contributed by Glauco Siliprandi, 3-Jan-2021.) |
⊢ 𝐴 = (0[,]2) & ⊢ 𝑆 = {𝑥 ∈ 𝒫 𝐴 ∣ (𝑥 ≼ ω ∨ (𝐴 ∖ 𝑥) ≼ ω)} & ⊢ 𝑋 = ran (𝑦 ∈ (0[,]1) ↦ {𝑦}) ⇒ ⊢ (𝑆 ∈ SAlg ∧ 𝑋 ⊆ 𝑆 ∧ ¬ ∪ 𝑋 ∈ 𝑆) | ||
Theorem | salgencntex 43772* | This counterexample shows that df-salgen 43744 needs to require that all containing sigma-algebra have the same base set. Otherwise, the intersection could lead to a set that is not a sigma-algebra. (Contributed by Glauco Siliprandi, 3-Jan-2021.) |
⊢ 𝐴 = (0[,]2) & ⊢ 𝑆 = {𝑥 ∈ 𝒫 𝐴 ∣ (𝑥 ≼ ω ∨ (𝐴 ∖ 𝑥) ≼ ω)} & ⊢ 𝐵 = (0[,]1) & ⊢ 𝑇 = 𝒫 𝐵 & ⊢ 𝐶 = (𝑆 ∩ 𝑇) & ⊢ 𝑍 = ∩ {𝑠 ∈ SAlg ∣ 𝐶 ⊆ 𝑠} ⇒ ⊢ ¬ 𝑍 ∈ SAlg | ||
Theorem | salgensscntex 43773* | This counterexample shows that the sigma-algebra generated by a set is not the smallest sigma-algebra containing the set, if we consider also sigma-algebras with a larger base set. (Contributed by Glauco Siliprandi, 3-Jan-2021.) |
⊢ 𝐴 = (0[,]2) & ⊢ 𝑆 = {𝑥 ∈ 𝒫 𝐴 ∣ (𝑥 ≼ ω ∨ (𝐴 ∖ 𝑥) ≼ ω)} & ⊢ 𝑋 = ran (𝑦 ∈ (0[,]1) ↦ {𝑦}) & ⊢ 𝐺 = (SalGen‘𝑋) ⇒ ⊢ (𝑋 ⊆ 𝑆 ∧ 𝑆 ∈ SAlg ∧ ¬ 𝐺 ⊆ 𝑆) | ||
Theorem | issalnnd 43774* | Sufficient condition to prove that 𝑆 is sigma-algebra. (Contributed by Glauco Siliprandi, 3-Mar-2021.) |
⊢ (𝜑 → 𝑆 ∈ 𝑉) & ⊢ (𝜑 → ∅ ∈ 𝑆) & ⊢ 𝑋 = ∪ 𝑆 & ⊢ ((𝜑 ∧ 𝑦 ∈ 𝑆) → (𝑋 ∖ 𝑦) ∈ 𝑆) & ⊢ ((𝜑 ∧ 𝑒:ℕ⟶𝑆) → ∪ 𝑛 ∈ ℕ (𝑒‘𝑛) ∈ 𝑆) ⇒ ⊢ (𝜑 → 𝑆 ∈ SAlg) | ||
Theorem | dmvolsal 43775 | Lebesgue measurable sets form a sigma-algebra. (Contributed by Glauco Siliprandi, 3-Mar-2021.) |
⊢ dom vol ∈ SAlg | ||
Theorem | saldifcld 43776 | The complement of an element of a sigma-algebra is in the sigma-algebra. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
⊢ (𝜑 → 𝑆 ∈ SAlg) & ⊢ (𝜑 → 𝐸 ∈ 𝑆) ⇒ ⊢ (𝜑 → (∪ 𝑆 ∖ 𝐸) ∈ 𝑆) | ||
Theorem | saluncld 43777 | The union of two sets in a sigma-algebra is in the sigma-algebra. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
⊢ (𝜑 → 𝑆 ∈ SAlg) & ⊢ (𝜑 → 𝐸 ∈ 𝑆) & ⊢ (𝜑 → 𝐹 ∈ 𝑆) ⇒ ⊢ (𝜑 → (𝐸 ∪ 𝐹) ∈ 𝑆) | ||
Theorem | salgencld 43778 | SalGen actually generates a sigma-algebra. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
⊢ (𝜑 → 𝑋 ∈ 𝑉) & ⊢ 𝑆 = (SalGen‘𝑋) ⇒ ⊢ (𝜑 → 𝑆 ∈ SAlg) | ||
Theorem | 0sald 43779 | The empty set belongs to every sigma-algebra. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
⊢ (𝜑 → 𝑆 ∈ SAlg) ⇒ ⊢ (𝜑 → ∅ ∈ 𝑆) | ||
Theorem | iooborel 43780 | An open interval is a Borel set. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
⊢ 𝐽 = (topGen‘ran (,)) & ⊢ 𝐵 = (SalGen‘𝐽) ⇒ ⊢ (𝐴(,)𝐶) ∈ 𝐵 | ||
Theorem | salincld 43781 | The intersection of two sets in a sigma-algebra is in the sigma-algebra. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
⊢ (𝜑 → 𝑆 ∈ SAlg) & ⊢ (𝜑 → 𝐸 ∈ 𝑆) & ⊢ (𝜑 → 𝐹 ∈ 𝑆) ⇒ ⊢ (𝜑 → (𝐸 ∩ 𝐹) ∈ 𝑆) | ||
Theorem | salunid 43782 | A set is an element of any sigma-algebra on it . (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
⊢ (𝜑 → 𝑆 ∈ SAlg) ⇒ ⊢ (𝜑 → ∪ 𝑆 ∈ 𝑆) | ||
Theorem | unisalgen2 43783 | The union of a set belongs is equal to the union of the sigma-algebra generated by the set. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ 𝑆 = (SalGen‘𝐴) ⇒ ⊢ (𝜑 → ∪ 𝑆 = ∪ 𝐴) | ||
Theorem | bor1sal 43784 | The Borel sigma-algebra on the Reals. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
⊢ 𝐽 = (topGen‘ran (,)) & ⊢ 𝐵 = (SalGen‘𝐽) ⇒ ⊢ 𝐵 ∈ SAlg | ||
Theorem | iocborel 43785 | A left-open, right-closed interval is a Borel set. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
⊢ (𝜑 → 𝐴 ∈ ℝ*) & ⊢ (𝜑 → 𝐶 ∈ ℝ) & ⊢ 𝐽 = (topGen‘ran (,)) & ⊢ 𝐵 = (SalGen‘𝐽) ⇒ ⊢ (𝜑 → (𝐴(,]𝐶) ∈ 𝐵) | ||
Theorem | subsaliuncllem 43786* | A subspace sigma-algebra is closed under countable union. This is Lemma 121A (iii) of [Fremlin1] p. 35. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
⊢ Ⅎ𝑦𝜑 & ⊢ (𝜑 → 𝑆 ∈ 𝑉) & ⊢ 𝐺 = (𝑛 ∈ ℕ ↦ {𝑥 ∈ 𝑆 ∣ (𝐹‘𝑛) = (𝑥 ∩ 𝐷)}) & ⊢ 𝐸 = (𝐻 ∘ 𝐺) & ⊢ (𝜑 → 𝐻 Fn ran 𝐺) & ⊢ (𝜑 → ∀𝑦 ∈ ran 𝐺(𝐻‘𝑦) ∈ 𝑦) ⇒ ⊢ (𝜑 → ∃𝑒 ∈ (𝑆 ↑m ℕ)∀𝑛 ∈ ℕ (𝐹‘𝑛) = ((𝑒‘𝑛) ∩ 𝐷)) | ||
Theorem | subsaliuncl 43787* | A subspace sigma-algebra is closed under countable union. This is Lemma 121A (iii) of [Fremlin1] p. 35. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
⊢ (𝜑 → 𝑆 ∈ SAlg) & ⊢ (𝜑 → 𝐷 ∈ 𝑉) & ⊢ 𝑇 = (𝑆 ↾t 𝐷) & ⊢ (𝜑 → 𝐹:ℕ⟶𝑇) ⇒ ⊢ (𝜑 → ∪ 𝑛 ∈ ℕ (𝐹‘𝑛) ∈ 𝑇) | ||
Theorem | subsalsal 43788 | A subspace sigma-algebra is a sigma algebra. This is Lemma 121A of [Fremlin1] p. 35. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
⊢ (𝜑 → 𝑆 ∈ SAlg) & ⊢ (𝜑 → 𝐷 ∈ 𝑉) & ⊢ 𝑇 = (𝑆 ↾t 𝐷) ⇒ ⊢ (𝜑 → 𝑇 ∈ SAlg) | ||
Theorem | subsaluni 43789 | A set belongs to the subspace sigma-algebra it induces. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
⊢ (𝜑 → 𝑆 ∈ SAlg) & ⊢ (𝜑 → 𝐴 ⊆ ∪ 𝑆) ⇒ ⊢ (𝜑 → 𝐴 ∈ (𝑆 ↾t 𝐴)) | ||
Syntax | csumge0 43790 | Extend class notation to include the sum of nonnegative extended reals. |
class Σ^ | ||
Definition | df-sumge0 43791* | Define the arbitrary sum of nonnegative extended reals. (Contributed by Glauco Siliprandi, 17-Aug-2020.) $. |
⊢ Σ^ = (𝑥 ∈ V ↦ if(+∞ ∈ ran 𝑥, +∞, sup(ran (𝑦 ∈ (𝒫 dom 𝑥 ∩ Fin) ↦ Σ𝑤 ∈ 𝑦 (𝑥‘𝑤)), ℝ*, < ))) | ||
Theorem | sge0rnre 43792* | When Σ^ is applied to nonnegative real numbers the range used in its definition is a subset of the reals. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
⊢ (𝜑 → 𝐹:𝑋⟶(0[,)+∞)) ⇒ ⊢ (𝜑 → ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦 ∈ 𝑥 (𝐹‘𝑦)) ⊆ ℝ) | ||
Theorem | fge0icoicc 43793 | If 𝐹 maps to nonnegative reals, then 𝐹 maps to nonnegative extended reals. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
⊢ (𝜑 → 𝐹:𝑋⟶(0[,)+∞)) ⇒ ⊢ (𝜑 → 𝐹:𝑋⟶(0[,]+∞)) | ||
Theorem | sge0val 43794* | The value of the sum of nonnegative extended reals. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
⊢ ((𝑋 ∈ 𝑉 ∧ 𝐹:𝑋⟶(0[,]+∞)) → (Σ^‘𝐹) = if(+∞ ∈ ran 𝐹, +∞, sup(ran (𝑦 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑤 ∈ 𝑦 (𝐹‘𝑤)), ℝ*, < ))) | ||
Theorem | fge0npnf 43795 | If 𝐹 maps to nonnegative reals, then +∞ is not in its range. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
⊢ (𝜑 → 𝐹:𝑋⟶(0[,)+∞)) ⇒ ⊢ (𝜑 → ¬ +∞ ∈ ran 𝐹) | ||
Theorem | sge0rnn0 43796* | The range used in the definition of Σ^ is not empty. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
⊢ ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦 ∈ 𝑥 (𝐹‘𝑦)) ≠ ∅ | ||
Theorem | sge0vald 43797* | The value of the sum of nonnegative extended reals. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
⊢ (𝜑 → 𝑋 ∈ 𝑉) & ⊢ (𝜑 → 𝐹:𝑋⟶(0[,]+∞)) ⇒ ⊢ (𝜑 → (Σ^‘𝐹) = if(+∞ ∈ ran 𝐹, +∞, sup(ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦 ∈ 𝑥 (𝐹‘𝑦)), ℝ*, < ))) | ||
Theorem | fge0iccico 43798 | A range of nonnegative extended reals without plus infinity. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
⊢ (𝜑 → 𝐹:𝑋⟶(0[,]+∞)) & ⊢ (𝜑 → ¬ +∞ ∈ ran 𝐹) ⇒ ⊢ (𝜑 → 𝐹:𝑋⟶(0[,)+∞)) | ||
Theorem | gsumge0cl 43799 | Closure of group sum, for finitely supported nonnegative extended reals. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
⊢ 𝐺 = (ℝ*𝑠 ↾s (0[,]+∞)) & ⊢ (𝜑 → 𝑋 ∈ 𝑉) & ⊢ (𝜑 → 𝐹:𝑋⟶(0[,]+∞)) & ⊢ (𝜑 → 𝐹 finSupp 0) ⇒ ⊢ (𝜑 → (𝐺 Σg 𝐹) ∈ (0[,]+∞)) | ||
Theorem | sge0reval 43800* | Value of the sum of nonnegative extended reals, when all terms in the sum are reals. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
⊢ (𝜑 → 𝑋 ∈ 𝑉) & ⊢ (𝜑 → 𝐹:𝑋⟶(0[,)+∞)) ⇒ ⊢ (𝜑 → (Σ^‘𝐹) = sup(ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦 ∈ 𝑥 (𝐹‘𝑦)), ℝ*, < )) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |