| Metamath
Proof Explorer Theorem List (p. 438 of 498) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30880) |
(30881-32403) |
(32404-49778) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | trclfvdecomr 43701 | The transitive closure of a relation may be decomposed into a union of the relation and the composition of the relation with its transitive closure. (Contributed by RP, 18-Jul-2020.) |
| ⊢ (𝑅 ∈ 𝑉 → (t+‘𝑅) = (𝑅 ∪ ((t+‘𝑅) ∘ 𝑅))) | ||
| Theorem | trclfvdecoml 43702 | The transitive closure of a relation may be decomposed into a union of the relation and the composition of the relation with its transitive closure. (Contributed by RP, 18-Jul-2020.) |
| ⊢ (𝑅 ∈ 𝑉 → (t+‘𝑅) = (𝑅 ∪ (𝑅 ∘ (t+‘𝑅)))) | ||
| Theorem | dmtrclfvRP 43703 | The domain of the transitive closure is equal to the domain of the relation. (Contributed by RP, 18-Jul-2020.) (Proof modification is discouraged.) |
| ⊢ (𝑅 ∈ 𝑉 → dom (t+‘𝑅) = dom 𝑅) | ||
| Theorem | rntrclfvRP 43704 | The range of the transitive closure is equal to the range of the relation. (Contributed by RP, 19-Jul-2020.) (Proof modification is discouraged.) |
| ⊢ (𝑅 ∈ 𝑉 → ran (t+‘𝑅) = ran 𝑅) | ||
| Theorem | rntrclfv 43705 | The range of the transitive closure is equal to the range of the relation. (Contributed by RP, 18-Jul-2020.) (Proof modification is discouraged.) |
| ⊢ (𝑅 ∈ 𝑉 → ran (t+‘𝑅) = ran 𝑅) | ||
| Theorem | dfrtrcl3 43706* | Reflexive-transitive closure of a relation, expressed as indexed union of powers of relations. Generalized from dfrtrcl2 14987. (Contributed by RP, 5-Jun-2020.) |
| ⊢ t* = (𝑟 ∈ V ↦ ∪ 𝑛 ∈ ℕ0 (𝑟↑𝑟𝑛)) | ||
| Theorem | brfvrtrcld 43707* | If two elements are connected by the reflexive-transitive closure of a relation, then they are connected via 𝑛 instances the relation, for some natural number 𝑛. Similar of dfrtrclrec2 14983. (Contributed by RP, 22-Jul-2020.) |
| ⊢ (𝜑 → 𝑅 ∈ V) ⇒ ⊢ (𝜑 → (𝐴(t*‘𝑅)𝐵 ↔ ∃𝑛 ∈ ℕ0 𝐴(𝑅↑𝑟𝑛)𝐵)) | ||
| Theorem | fvrtrcllb0d 43708 | A restriction of the identity relation is a subset of the reflexive-transitive closure of a set. (Contributed by RP, 22-Jul-2020.) |
| ⊢ (𝜑 → 𝑅 ∈ V) ⇒ ⊢ (𝜑 → ( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ (t*‘𝑅)) | ||
| Theorem | fvrtrcllb0da 43709 | A restriction of the identity relation is a subset of the reflexive-transitive closure of a relation. (Contributed by RP, 22-Jul-2020.) |
| ⊢ (𝜑 → Rel 𝑅) & ⊢ (𝜑 → 𝑅 ∈ V) ⇒ ⊢ (𝜑 → ( I ↾ ∪ ∪ 𝑅) ⊆ (t*‘𝑅)) | ||
| Theorem | fvrtrcllb1d 43710 | A set is a subset of its image under the reflexive-transitive closure. (Contributed by RP, 22-Jul-2020.) |
| ⊢ (𝜑 → 𝑅 ∈ V) ⇒ ⊢ (𝜑 → 𝑅 ⊆ (t*‘𝑅)) | ||
| Theorem | dfrtrcl4 43711 | Reflexive-transitive closure of a relation, expressed as the union of the zeroth power and the transitive closure. (Contributed by RP, 5-Jun-2020.) |
| ⊢ t* = (𝑟 ∈ V ↦ ((𝑟↑𝑟0) ∪ (t+‘𝑟))) | ||
| Theorem | corcltrcl 43712 | The composition of the reflexive and transitive closures is the reflexive-transitive closure. (Contributed by RP, 17-Jun-2020.) |
| ⊢ (r* ∘ t+) = t* | ||
| Theorem | cortrcltrcl 43713 | Composition with the reflexive-transitive closure absorbs the transitive closure. (Contributed by RP, 13-Jun-2020.) |
| ⊢ (t* ∘ t+) = t* | ||
| Theorem | corclrtrcl 43714 | Composition with the reflexive-transitive closure absorbs the reflexive closure. (Contributed by RP, 13-Jun-2020.) |
| ⊢ (r* ∘ t*) = t* | ||
| Theorem | cotrclrcl 43715 | The composition of the reflexive and transitive closures is the reflexive-transitive closure. (Contributed by RP, 21-Jun-2020.) |
| ⊢ (t+ ∘ r*) = t* | ||
| Theorem | cortrclrcl 43716 | Composition with the reflexive-transitive closure absorbs the reflexive closure. (Contributed by RP, 13-Jun-2020.) |
| ⊢ (t* ∘ r*) = t* | ||
| Theorem | cotrclrtrcl 43717 | Composition with the reflexive-transitive closure absorbs the transitive closure. (Contributed by RP, 13-Jun-2020.) |
| ⊢ (t+ ∘ t*) = t* | ||
| Theorem | cortrclrtrcl 43718 | The reflexive-transitive closure is idempotent. (Contributed by RP, 13-Jun-2020.) |
| ⊢ (t* ∘ t*) = t* | ||
Theorems inspired by Begriffsschrift without restricting form and content to closely parallel those in [Frege1879]. | ||
| Theorem | frege77d 43719 | If the images of both {𝐴} and 𝑈 are subsets of 𝑈 and 𝐵 follows 𝐴 in the transitive closure of 𝑅, then 𝐵 is an element of 𝑈. Similar to Proposition 77 of [Frege1879] p. 62. Compare with frege77 43913. (Contributed by RP, 15-Jul-2020.) |
| ⊢ (𝜑 → 𝑅 ∈ V) & ⊢ (𝜑 → 𝐴 ∈ V) & ⊢ (𝜑 → 𝐵 ∈ V) & ⊢ (𝜑 → 𝐴(t+‘𝑅)𝐵) & ⊢ (𝜑 → (𝑅 “ 𝑈) ⊆ 𝑈) & ⊢ (𝜑 → (𝑅 “ {𝐴}) ⊆ 𝑈) ⇒ ⊢ (𝜑 → 𝐵 ∈ 𝑈) | ||
| Theorem | frege81d 43720 | If the image of 𝑈 is a subset 𝑈, 𝐴 is an element of 𝑈 and 𝐵 follows 𝐴 in the transitive closure of 𝑅, then 𝐵 is an element of 𝑈. Similar to Proposition 81 of [Frege1879] p. 63. Compare with frege81 43917. (Contributed by RP, 15-Jul-2020.) |
| ⊢ (𝜑 → 𝑅 ∈ V) & ⊢ (𝜑 → 𝐴 ∈ 𝑈) & ⊢ (𝜑 → 𝐵 ∈ V) & ⊢ (𝜑 → 𝐴(t+‘𝑅)𝐵) & ⊢ (𝜑 → (𝑅 “ 𝑈) ⊆ 𝑈) ⇒ ⊢ (𝜑 → 𝐵 ∈ 𝑈) | ||
| Theorem | frege83d 43721 | If the image of the union of 𝑈 and 𝑉 is a subset of the union of 𝑈 and 𝑉, 𝐴 is an element of 𝑈 and 𝐵 follows 𝐴 in the transitive closure of 𝑅, then 𝐵 is an element of the union of 𝑈 and 𝑉. Similar to Proposition 83 of [Frege1879] p. 65. Compare with frege83 43919. (Contributed by RP, 15-Jul-2020.) |
| ⊢ (𝜑 → 𝑅 ∈ V) & ⊢ (𝜑 → 𝐴 ∈ 𝑈) & ⊢ (𝜑 → 𝐵 ∈ V) & ⊢ (𝜑 → 𝐴(t+‘𝑅)𝐵) & ⊢ (𝜑 → (𝑅 “ (𝑈 ∪ 𝑉)) ⊆ (𝑈 ∪ 𝑉)) ⇒ ⊢ (𝜑 → 𝐵 ∈ (𝑈 ∪ 𝑉)) | ||
| Theorem | frege96d 43722 | If 𝐶 follows 𝐴 in the transitive closure of 𝑅 and 𝐵 follows 𝐶 in 𝑅, then 𝐵 follows 𝐴 in the transitive closure of 𝑅. Similar to Proposition 96 of [Frege1879] p. 71. Compare with frege96 43932. (Contributed by RP, 15-Jul-2020.) |
| ⊢ (𝜑 → 𝑅 ∈ V) & ⊢ (𝜑 → 𝐴 ∈ V) & ⊢ (𝜑 → 𝐵 ∈ V) & ⊢ (𝜑 → 𝐶 ∈ V) & ⊢ (𝜑 → 𝐴(t+‘𝑅)𝐶) & ⊢ (𝜑 → 𝐶𝑅𝐵) ⇒ ⊢ (𝜑 → 𝐴(t+‘𝑅)𝐵) | ||
| Theorem | frege87d 43723 | If the images of both {𝐴} and 𝑈 are subsets of 𝑈 and 𝐶 follows 𝐴 in the transitive closure of 𝑅 and 𝐵 follows 𝐶 in 𝑅, then 𝐵 is an element of 𝑈. Similar to Proposition 87 of [Frege1879] p. 66. Compare with frege87 43923. (Contributed by RP, 15-Jul-2020.) |
| ⊢ (𝜑 → 𝑅 ∈ V) & ⊢ (𝜑 → 𝐴 ∈ V) & ⊢ (𝜑 → 𝐵 ∈ V) & ⊢ (𝜑 → 𝐶 ∈ V) & ⊢ (𝜑 → 𝐴(t+‘𝑅)𝐶) & ⊢ (𝜑 → 𝐶𝑅𝐵) & ⊢ (𝜑 → (𝑅 “ {𝐴}) ⊆ 𝑈) & ⊢ (𝜑 → (𝑅 “ 𝑈) ⊆ 𝑈) ⇒ ⊢ (𝜑 → 𝐵 ∈ 𝑈) | ||
| Theorem | frege91d 43724 | If 𝐵 follows 𝐴 in 𝑅 then 𝐵 follows 𝐴 in the transitive closure of 𝑅. Similar to Proposition 91 of [Frege1879] p. 68. Comparw with frege91 43927. (Contributed by RP, 15-Jul-2020.) |
| ⊢ (𝜑 → 𝑅 ∈ V) & ⊢ (𝜑 → 𝐴𝑅𝐵) ⇒ ⊢ (𝜑 → 𝐴(t+‘𝑅)𝐵) | ||
| Theorem | frege97d 43725 | If 𝐴 contains all elements after those in 𝑈 in the transitive closure of 𝑅, then the image under 𝑅 of 𝐴 is a subclass of 𝐴. Similar to Proposition 97 of [Frege1879] p. 71. Compare with frege97 43933. (Contributed by RP, 15-Jul-2020.) |
| ⊢ (𝜑 → 𝑅 ∈ V) & ⊢ (𝜑 → 𝐴 = ((t+‘𝑅) “ 𝑈)) ⇒ ⊢ (𝜑 → (𝑅 “ 𝐴) ⊆ 𝐴) | ||
| Theorem | frege98d 43726 | If 𝐶 follows 𝐴 and 𝐵 follows 𝐶 in the transitive closure of 𝑅, then 𝐵 follows 𝐴 in the transitive closure of 𝑅. Similar to Proposition 98 of [Frege1879] p. 71. Compare with frege98 43934. (Contributed by RP, 15-Jul-2020.) |
| ⊢ (𝜑 → 𝐴 ∈ V) & ⊢ (𝜑 → 𝐵 ∈ V) & ⊢ (𝜑 → 𝐶 ∈ V) & ⊢ (𝜑 → 𝐴(t+‘𝑅)𝐶) & ⊢ (𝜑 → 𝐶(t+‘𝑅)𝐵) ⇒ ⊢ (𝜑 → 𝐴(t+‘𝑅)𝐵) | ||
| Theorem | frege102d 43727 | If either 𝐴 and 𝐶 are the same or 𝐶 follows 𝐴 in the transitive closure of 𝑅 and 𝐵 is the successor to 𝐶, then 𝐵 follows 𝐴 in the transitive closure of 𝑅. Similar to Proposition 102 of [Frege1879] p. 72. Compare with frege102 43938. (Contributed by RP, 15-Jul-2020.) |
| ⊢ (𝜑 → 𝑅 ∈ V) & ⊢ (𝜑 → 𝐴 ∈ V) & ⊢ (𝜑 → 𝐵 ∈ V) & ⊢ (𝜑 → 𝐶 ∈ V) & ⊢ (𝜑 → (𝐴(t+‘𝑅)𝐶 ∨ 𝐴 = 𝐶)) & ⊢ (𝜑 → 𝐶𝑅𝐵) ⇒ ⊢ (𝜑 → 𝐴(t+‘𝑅)𝐵) | ||
| Theorem | frege106d 43728 | If 𝐵 follows 𝐴 in 𝑅, then either 𝐴 and 𝐵 are the same or 𝐵 follows 𝐴 in 𝑅. Similar to Proposition 106 of [Frege1879] p. 73. Compare with frege106 43942. (Contributed by RP, 15-Jul-2020.) |
| ⊢ (𝜑 → 𝐴𝑅𝐵) ⇒ ⊢ (𝜑 → (𝐴𝑅𝐵 ∨ 𝐴 = 𝐵)) | ||
| Theorem | frege108d 43729 | If either 𝐴 and 𝐶 are the same or 𝐶 follows 𝐴 in the transitive closure of 𝑅 and 𝐵 is the successor to 𝐶, then either 𝐴 and 𝐵 are the same or 𝐵 follows 𝐴 in the transitive closure of 𝑅. Similar to Proposition 108 of [Frege1879] p. 74. Compare with frege108 43944. (Contributed by RP, 15-Jul-2020.) |
| ⊢ (𝜑 → 𝑅 ∈ V) & ⊢ (𝜑 → 𝐴 ∈ V) & ⊢ (𝜑 → 𝐵 ∈ V) & ⊢ (𝜑 → 𝐶 ∈ V) & ⊢ (𝜑 → (𝐴(t+‘𝑅)𝐶 ∨ 𝐴 = 𝐶)) & ⊢ (𝜑 → 𝐶𝑅𝐵) ⇒ ⊢ (𝜑 → (𝐴(t+‘𝑅)𝐵 ∨ 𝐴 = 𝐵)) | ||
| Theorem | frege109d 43730 | If 𝐴 contains all elements of 𝑈 and all elements after those in 𝑈 in the transitive closure of 𝑅, then the image under 𝑅 of 𝐴 is a subclass of 𝐴. Similar to Proposition 109 of [Frege1879] p. 74. Compare with frege109 43945. (Contributed by RP, 15-Jul-2020.) |
| ⊢ (𝜑 → 𝑅 ∈ V) & ⊢ (𝜑 → 𝐴 = (𝑈 ∪ ((t+‘𝑅) “ 𝑈))) ⇒ ⊢ (𝜑 → (𝑅 “ 𝐴) ⊆ 𝐴) | ||
| Theorem | frege114d 43731 | If either 𝑅 relates 𝐴 and 𝐵 or 𝐴 and 𝐵 are the same, then either 𝐴 and 𝐵 are the same, 𝑅 relates 𝐴 and 𝐵, 𝑅 relates 𝐵 and 𝐴. Similar to Proposition 114 of [Frege1879] p. 76. Compare with frege114 43950. (Contributed by RP, 15-Jul-2020.) |
| ⊢ (𝜑 → (𝐴𝑅𝐵 ∨ 𝐴 = 𝐵)) ⇒ ⊢ (𝜑 → (𝐴𝑅𝐵 ∨ 𝐴 = 𝐵 ∨ 𝐵𝑅𝐴)) | ||
| Theorem | frege111d 43732 | If either 𝐴 and 𝐶 are the same or 𝐶 follows 𝐴 in the transitive closure of 𝑅 and 𝐵 is the successor to 𝐶, then either 𝐴 and 𝐵 are the same or 𝐴 follows 𝐵 or 𝐵 and 𝐴 in the transitive closure of 𝑅. Similar to Proposition 111 of [Frege1879] p. 75. Compare with frege111 43947. (Contributed by RP, 15-Jul-2020.) |
| ⊢ (𝜑 → 𝑅 ∈ V) & ⊢ (𝜑 → 𝐴 ∈ V) & ⊢ (𝜑 → 𝐵 ∈ V) & ⊢ (𝜑 → 𝐶 ∈ V) & ⊢ (𝜑 → (𝐴(t+‘𝑅)𝐶 ∨ 𝐴 = 𝐶)) & ⊢ (𝜑 → 𝐶𝑅𝐵) ⇒ ⊢ (𝜑 → (𝐴(t+‘𝑅)𝐵 ∨ 𝐴 = 𝐵 ∨ 𝐵(t+‘𝑅)𝐴)) | ||
| Theorem | frege122d 43733 | If 𝐹 is a function, 𝐴 is the successor of 𝑋, and 𝐵 is the successor of 𝑋, then 𝐴 and 𝐵 are the same (or 𝐵 follows 𝐴 in the transitive closure of 𝐹). Similar to Proposition 122 of [Frege1879] p. 79. Compare with frege122 43958. (Contributed by RP, 15-Jul-2020.) |
| ⊢ (𝜑 → 𝐴 = (𝐹‘𝑋)) & ⊢ (𝜑 → 𝐵 = (𝐹‘𝑋)) ⇒ ⊢ (𝜑 → (𝐴(t+‘𝐹)𝐵 ∨ 𝐴 = 𝐵)) | ||
| Theorem | frege124d 43734 | If 𝐹 is a function, 𝐴 is the successor of 𝑋, and 𝐵 follows 𝑋 in the transitive closure of 𝐹, then 𝐴 and 𝐵 are the same or 𝐵 follows 𝐴 in the transitive closure of 𝐹. Similar to Proposition 124 of [Frege1879] p. 80. Compare with frege124 43960. (Contributed by RP, 16-Jul-2020.) |
| ⊢ (𝜑 → 𝐹 ∈ V) & ⊢ (𝜑 → 𝑋 ∈ dom 𝐹) & ⊢ (𝜑 → 𝐴 = (𝐹‘𝑋)) & ⊢ (𝜑 → 𝑋(t+‘𝐹)𝐵) & ⊢ (𝜑 → Fun 𝐹) ⇒ ⊢ (𝜑 → (𝐴(t+‘𝐹)𝐵 ∨ 𝐴 = 𝐵)) | ||
| Theorem | frege126d 43735 | If 𝐹 is a function, 𝐴 is the successor of 𝑋, and 𝐵 follows 𝑋 in the transitive closure of 𝐹, then (for distinct 𝐴 and 𝐵) either 𝐴 follows 𝐵 or 𝐵 follows 𝐴 in the transitive closure of 𝐹. Similar to Proposition 126 of [Frege1879] p. 81. Compare with frege126 43962. (Contributed by RP, 16-Jul-2020.) |
| ⊢ (𝜑 → 𝐹 ∈ V) & ⊢ (𝜑 → 𝑋 ∈ dom 𝐹) & ⊢ (𝜑 → 𝐴 = (𝐹‘𝑋)) & ⊢ (𝜑 → 𝑋(t+‘𝐹)𝐵) & ⊢ (𝜑 → Fun 𝐹) ⇒ ⊢ (𝜑 → (𝐴(t+‘𝐹)𝐵 ∨ 𝐴 = 𝐵 ∨ 𝐵(t+‘𝐹)𝐴)) | ||
| Theorem | frege129d 43736 | If 𝐹 is a function and (for distinct 𝐴 and 𝐵) either 𝐴 follows 𝐵 or 𝐵 follows 𝐴 in the transitive closure of 𝐹, the successor of 𝐴 is either 𝐵 or it follows 𝐵 or it comes before 𝐵 in the transitive closure of 𝐹. Similar to Proposition 129 of [Frege1879] p. 83. Comparw with frege129 43965. (Contributed by RP, 16-Jul-2020.) |
| ⊢ (𝜑 → 𝐹 ∈ V) & ⊢ (𝜑 → 𝐴 ∈ dom 𝐹) & ⊢ (𝜑 → 𝐶 = (𝐹‘𝐴)) & ⊢ (𝜑 → (𝐴(t+‘𝐹)𝐵 ∨ 𝐴 = 𝐵 ∨ 𝐵(t+‘𝐹)𝐴)) & ⊢ (𝜑 → Fun 𝐹) ⇒ ⊢ (𝜑 → (𝐵(t+‘𝐹)𝐶 ∨ 𝐵 = 𝐶 ∨ 𝐶(t+‘𝐹)𝐵)) | ||
| Theorem | frege131d 43737 | If 𝐹 is a function and 𝐴 contains all elements of 𝑈 and all elements before or after those elements of 𝑈 in the transitive closure of 𝐹, then the image under 𝐹 of 𝐴 is a subclass of 𝐴. Similar to Proposition 131 of [Frege1879] p. 85. Compare with frege131 43967. (Contributed by RP, 17-Jul-2020.) |
| ⊢ (𝜑 → 𝐹 ∈ V) & ⊢ (𝜑 → 𝐴 = (𝑈 ∪ ((◡(t+‘𝐹) “ 𝑈) ∪ ((t+‘𝐹) “ 𝑈)))) & ⊢ (𝜑 → Fun 𝐹) ⇒ ⊢ (𝜑 → (𝐹 “ 𝐴) ⊆ 𝐴) | ||
| Theorem | frege133d 43738 | If 𝐹 is a function and 𝐴 and 𝐵 both follow 𝑋 in the transitive closure of 𝐹, then (for distinct 𝐴 and 𝐵) either 𝐴 follows 𝐵 or 𝐵 follows 𝐴 in the transitive closure of 𝐹 (or both if it loops). Similar to Proposition 133 of [Frege1879] p. 86. Compare with frege133 43969. (Contributed by RP, 18-Jul-2020.) |
| ⊢ (𝜑 → 𝐹 ∈ V) & ⊢ (𝜑 → 𝑋(t+‘𝐹)𝐴) & ⊢ (𝜑 → 𝑋(t+‘𝐹)𝐵) & ⊢ (𝜑 → Fun 𝐹) ⇒ ⊢ (𝜑 → (𝐴(t+‘𝐹)𝐵 ∨ 𝐴 = 𝐵 ∨ 𝐵(t+‘𝐹)𝐴)) | ||
In 1879, Frege introduced notation for documenting formal reasoning about propositions (and classes) which covered elements of propositional logic, predicate calculus and reasoning about relations. However, due to the pitfalls of naive set theory, adapting this work for inclusion in set.mm required dividing statements about propositions from those about classes and identifying when a restriction to sets is required. For an overview comparing the details of Frege's two-dimensional notation and that used in set.mm, see mmfrege.html. See ru 3742 for discussion of an example of a class that is not a set. Numbered propositions from [Frege1879]. ax-frege1 43763, ax-frege2 43764, ax-frege8 43782, ax-frege28 43803, ax-frege31 43807, ax-frege41 43818, frege52 (see ax-frege52a 43830, frege52b 43862, and ax-frege52c 43861 for translations), frege54 (see ax-frege54a 43835, frege54b 43866 and ax-frege54c 43865 for translations) and frege58 (see ax-frege58a 43848, ax-frege58b 43874 and frege58c 43894 for translations) are considered "core" or axioms. However, at least ax-frege8 43782 can be derived from ax-frege1 43763 and ax-frege2 43764, see axfrege8 43780. Frege introduced implication, negation and the universal quantifier as primitives and did not in the numbered propositions use other logical connectives other than equivalence introduced in ax-frege52a 43830, frege52b 43862, and ax-frege52c 43861. In dffrege69 43905, Frege introduced 𝑅 hereditary 𝐴 to say that relation 𝑅, when restricted to operate on elements of class 𝐴, will only have elements of class 𝐴 in its domain; see df-he 43746 for a definition in terms of image and subset. In dffrege76 43912, Frege introduced notation for the concept of two sets related by the transitive closure of a relation, for which we write 𝑋(t+‘𝑅)𝑌, which requires 𝑅 to also be a set. In dffrege99 43935, Frege introduced notation for the concept of two sets either identical or related by the transitive closure of a relation, for which we write 𝑋((t+‘𝑅) ∪ I )𝑌, which is a superclass of sets related by the reflexive-transitive relation 𝑋(t*‘𝑅)𝑌. Finally, in dffrege115 43951, Frege introduced notation for the concept of a relation having the property elements in its domain pair up with only one element each in its range, for which we write Fun ◡◡𝑅 (to ignore any non-relational content of the class 𝑅). Frege did this without the expressing concept of a relation (or its transitive closure) as a class, and needed to invent conventions for discussing indeterminate propositions with two slots free and how to recognize which of the slots was domain and which was range. See mmfrege.html 43951 for details. English translations for specific propositions lifted in part from a translation by Stefan Bauer-Mengelberg as reprinted in From Frege to Goedel: A Source Book in Mathematical Logic, 1879-1931. An attempt to align these propositions in the larger set.mm database has also been made. See frege77d 43719 for an example. | ||
Section 2 introduces the turnstile ⊢ which turns an idea which may be true 𝜑 into an assertion that it does hold true ⊢ 𝜑. Section 5 introduces implication, (𝜑 → 𝜓). Section 6 introduces the single rule of interference relied upon, modus ponens ax-mp 5. Section 7 introduces negation and with in synonyms for or (¬ 𝜑 → 𝜓) , and ¬ (𝜑 → ¬ 𝜓), and two for exclusive-or corresponding to df-or 848, df-an 396, dfxor4 43739, dfxor5 43740. Section 8 introduces the problematic notation for identity of conceptual content which must be separated into cases for biconditional (𝜑 ↔ 𝜓) or class equality 𝐴 = 𝐵 in this adaptation. Section 10 introduces "truth functions" for one or two variables in equally troubling notation, as the arguments may be understood to be logical predicates or collections. Here f(𝜑) is interpreted to mean if-(𝜑, 𝜓, 𝜒) where the content of the "function" is specified by the latter two arguments or logical equivalent, while g(𝐴) is read as 𝐴 ∈ 𝐺 and h(𝐴, 𝐵) as 𝐴𝐻𝐵. This necessarily introduces a need for set theory as both 𝐴 ∈ 𝐺 and 𝐴𝐻𝐵 cannot hold unless 𝐴 is a set. (Also 𝐵.) Section 11 introduces notation for generality, but there is no standard notation for generality when the variable is a proposition because it was realized after Frege that the universe of all possible propositions includes paradoxical constructions leading to the failure of naive set theory. So adopting f(𝜑) as if-(𝜑, 𝜓, 𝜒) would result in the translation of ∀𝜑 f (𝜑) as (𝜓 ∧ 𝜒). For collections, we must generalize over set variables or run into the same problems; this leads to ∀𝐴 g(𝐴) being translated as ∀𝑎𝑎 ∈ 𝐺 and so forth. Under this interpreation the text of section 11 gives us sp 2184 (or simpl 482 and simpr 484 and anifp 1071 in the propositional case) and statements similar to cbvalivw 2007, ax-gen 1795, alrimiv 1927, and alrimdv 1929. These last four introduce a generality and have no useful definition in terms of propositional variables. Section 12 introduces some combinations of primitive symbols and their human language counterparts. Using class notation, these can also be expressed without dummy variables. All are A, ∀𝑥𝑥 ∈ 𝐴, ¬ ∃𝑥¬ 𝑥 ∈ 𝐴 alex 1826, 𝐴 = V eqv 3448; Some are not B, ¬ ∀𝑥𝑥 ∈ 𝐵, ∃𝑥¬ 𝑥 ∈ 𝐵 exnal 1827, 𝐵 ⊊ V pssv 4402, 𝐵 ≠ V nev 43743; There are no C, ∀𝑥¬ 𝑥 ∈ 𝐶, ¬ ∃𝑥𝑥 ∈ 𝐶 alnex 1781, 𝐶 = ∅ eq0 4303; There exist D, ¬ ∀𝑥¬ 𝑥 ∈ 𝐷, ∃𝑥𝑥 ∈ 𝐷 df-ex 1780, ∅ ⊊ 𝐷 0pss 4400, 𝐷 ≠ ∅ n0 4306. Notation for relations between expressions also can be written in various ways. All E are P, ∀𝑥(𝑥 ∈ 𝐸 → 𝑥 ∈ 𝑃), ¬ ∃𝑥(𝑥 ∈ 𝐸 ∧ ¬ 𝑥 ∈ 𝑃) dfss6 3927, 𝐸 = (𝐸 ∩ 𝑃) dfss2 3923, 𝐸 ⊆ 𝑃 df-ss 3922; No F are P, ∀𝑥(𝑥 ∈ 𝐹 → ¬ 𝑥 ∈ 𝑃), ¬ ∃𝑥(𝑥 ∈ 𝐹 ∧ 𝑥 ∈ 𝑃) alinexa 1843, (𝐹 ∩ 𝑃) = ∅ disj1 4405; Some G are not P, ¬ ∀𝑥(𝑥 ∈ 𝐺 → 𝑥 ∈ 𝑃), ∃𝑥(𝑥 ∈ 𝐺 ∧ ¬ 𝑥 ∈ 𝑃) exanali 1859, (𝐺 ∩ 𝑃) ⊊ 𝐺 nssinpss 4220, ¬ 𝐺 ⊆ 𝑃 nss 4002; Some H are P, ¬ ∀𝑥(𝑥 ∈ 𝐻 → ¬ 𝑥 ∈ 𝑃), ∃𝑥(𝑥 ∈ 𝐻 ∧ 𝑥 ∈ 𝑃) exnalimn 1844, ∅ ⊊ (𝐻 ∩ 𝑃) 0pssin 43744, (𝐻 ∩ 𝑃) ≠ ∅ ndisj 4323. | ||
| Theorem | dfxor4 43739 | Express exclusive-or in terms of implication and negation. Statement in [Frege1879] p. 12. (Contributed by RP, 14-Apr-2020.) |
| ⊢ ((𝜑 ⊻ 𝜓) ↔ ¬ ((¬ 𝜑 → 𝜓) → ¬ (𝜑 → ¬ 𝜓))) | ||
| Theorem | dfxor5 43740 | Express exclusive-or in terms of implication and negation. Statement in [Frege1879] p. 12. (Contributed by RP, 14-Apr-2020.) |
| ⊢ ((𝜑 ⊻ 𝜓) ↔ ¬ ((𝜑 → ¬ 𝜓) → ¬ (¬ 𝜑 → 𝜓))) | ||
| Theorem | df3or2 43741 | Express triple-or in terms of implication and negation. Statement in [Frege1879] p. 11. (Contributed by RP, 25-Jul-2020.) |
| ⊢ ((𝜑 ∨ 𝜓 ∨ 𝜒) ↔ (¬ 𝜑 → (¬ 𝜓 → 𝜒))) | ||
| Theorem | df3an2 43742 | Express triple-and in terms of implication and negation. Statement in [Frege1879] p. 12. (Contributed by RP, 25-Jul-2020.) |
| ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) ↔ ¬ (𝜑 → (𝜓 → ¬ 𝜒))) | ||
| Theorem | nev 43743* | Express that not every set is in a class. (Contributed by RP, 16-Apr-2020.) |
| ⊢ (𝐴 ≠ V ↔ ¬ ∀𝑥 𝑥 ∈ 𝐴) | ||
| Theorem | 0pssin 43744* | Express that an intersection is not empty. (Contributed by RP, 16-Apr-2020.) |
| ⊢ (∅ ⊊ (𝐴 ∩ 𝐵) ↔ ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵)) | ||
The statement 𝑅 hereditary 𝐴 means relation 𝑅 is hereditary (in the sense of Frege) in the class 𝐴 or (𝑅 “ 𝐴) ⊆ 𝐴. The former is only a slight reduction in the number of symbols, but this reduces the number of floating hypotheses needed to be checked. As Frege was not using the language of classes or sets, this naturally differs from the set-theoretic notion that a set is hereditary in a property: that all of its elements have a property and all of their elements have the property and so-on. | ||
| Syntax | whe 43745 | The property of relation 𝑅 being hereditary in class 𝐴. |
| wff 𝑅 hereditary 𝐴 | ||
| Definition | df-he 43746 | The property of relation 𝑅 being hereditary in class 𝐴. (Contributed by RP, 27-Mar-2020.) |
| ⊢ (𝑅 hereditary 𝐴 ↔ (𝑅 “ 𝐴) ⊆ 𝐴) | ||
| Theorem | dfhe2 43747 | The property of relation 𝑅 being hereditary in class 𝐴. (Contributed by RP, 27-Mar-2020.) |
| ⊢ (𝑅 hereditary 𝐴 ↔ (𝑅 ↾ 𝐴) ⊆ (𝐴 × 𝐴)) | ||
| Theorem | dfhe3 43748* | The property of relation 𝑅 being hereditary in class 𝐴. (Contributed by RP, 27-Mar-2020.) |
| ⊢ (𝑅 hereditary 𝐴 ↔ ∀𝑥(𝑥 ∈ 𝐴 → ∀𝑦(𝑥𝑅𝑦 → 𝑦 ∈ 𝐴))) | ||
| Theorem | heeq12 43749 | Equality law for relations being herditary over a class. (Contributed by RP, 27-Mar-2020.) |
| ⊢ ((𝑅 = 𝑆 ∧ 𝐴 = 𝐵) → (𝑅 hereditary 𝐴 ↔ 𝑆 hereditary 𝐵)) | ||
| Theorem | heeq1 43750 | Equality law for relations being herditary over a class. (Contributed by RP, 27-Mar-2020.) |
| ⊢ (𝑅 = 𝑆 → (𝑅 hereditary 𝐴 ↔ 𝑆 hereditary 𝐴)) | ||
| Theorem | heeq2 43751 | Equality law for relations being herditary over a class. (Contributed by RP, 27-Mar-2020.) |
| ⊢ (𝐴 = 𝐵 → (𝑅 hereditary 𝐴 ↔ 𝑅 hereditary 𝐵)) | ||
| Theorem | sbcheg 43752 | Distribute proper substitution through herditary relation. (Contributed by RP, 29-Jun-2020.) |
| ⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥]𝐵 hereditary 𝐶 ↔ ⦋𝐴 / 𝑥⦌𝐵 hereditary ⦋𝐴 / 𝑥⦌𝐶)) | ||
| Theorem | hess 43753 | Subclass law for relations being herditary over a class. (Contributed by RP, 27-Mar-2020.) |
| ⊢ (𝑆 ⊆ 𝑅 → (𝑅 hereditary 𝐴 → 𝑆 hereditary 𝐴)) | ||
| Theorem | xphe 43754 | Any Cartesian product is hereditary in its second class. (Contributed by RP, 27-Mar-2020.) (Proof shortened by OpenAI, 3-Jul-2020.) |
| ⊢ (𝐴 × 𝐵) hereditary 𝐵 | ||
| Theorem | 0he 43755 | The empty relation is hereditary in any class. (Contributed by RP, 27-Mar-2020.) |
| ⊢ ∅ hereditary 𝐴 | ||
| Theorem | 0heALT 43756 | The empty relation is hereditary in any class. (Contributed by RP, 27-Mar-2020.) (New usage is discouraged.) (Proof modification is discouraged.) |
| ⊢ ∅ hereditary 𝐴 | ||
| Theorem | he0 43757 | Any relation is hereditary in the empty set. (Contributed by RP, 27-Mar-2020.) |
| ⊢ 𝐴 hereditary ∅ | ||
| Theorem | unhe1 43758 | The union of two relations hereditary in a class is also hereditary in a class. (Contributed by RP, 28-Mar-2020.) |
| ⊢ ((𝑅 hereditary 𝐴 ∧ 𝑆 hereditary 𝐴) → (𝑅 ∪ 𝑆) hereditary 𝐴) | ||
| Theorem | snhesn 43759 | Any singleton is hereditary in any singleton. (Contributed by RP, 28-Mar-2020.) |
| ⊢ {〈𝐴, 𝐴〉} hereditary {𝐵} | ||
| Theorem | idhe 43760 | The identity relation is hereditary in any class. (Contributed by RP, 28-Mar-2020.) |
| ⊢ I hereditary 𝐴 | ||
| Theorem | psshepw 43761 | The relation between sets and their proper subsets is hereditary in the powerclass of any class. (Contributed by RP, 28-Mar-2020.) |
| ⊢ ◡ [⊊] hereditary 𝒫 𝐴 | ||
| Theorem | sshepw 43762 | The relation between sets and their subsets is hereditary in the powerclass of any class. (Contributed by RP, 28-Mar-2020.) |
| ⊢ (◡ [⊊] ∪ I ) hereditary 𝒫 𝐴 | ||
| Axiom | ax-frege1 43763 | The case in which 𝜑 is denied, 𝜓 is affirmed, and 𝜑 is affirmed is excluded. This is evident since 𝜑 cannot at the same time be denied and affirmed. Axiom 1 of [Frege1879] p. 26. Identical to ax-1 6. (Contributed by RP, 24-Dec-2019.) (New usage is discouraged.) |
| ⊢ (𝜑 → (𝜓 → 𝜑)) | ||
| Axiom | ax-frege2 43764 | If a proposition 𝜒 is a necessary consequence of two propositions 𝜓 and 𝜑 and one of those, 𝜓, is in turn a necessary consequence of the other, 𝜑, then the proposition 𝜒 is a necessary consequence of the latter one, 𝜑, alone. Axiom 2 of [Frege1879] p. 26. Identical to ax-2 7. (Contributed by RP, 24-Dec-2019.) (New usage is discouraged.) |
| ⊢ ((𝜑 → (𝜓 → 𝜒)) → ((𝜑 → 𝜓) → (𝜑 → 𝜒))) | ||
| Theorem | rp-simp2-frege 43765 | Simplification of triple conjunction. Compare with simp2 1137. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
| ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜓))) | ||
| Theorem | rp-simp2 43766 | Simplification of triple conjunction. Identical to simp2 1137. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
| ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜓) | ||
| Theorem | rp-frege3g 43767 |
Add antecedent to ax-frege2 43764. More general statement than frege3 43768.
Like ax-frege2 43764, it is essentially a closed form of mpd 15,
however it
has an extra antecedent.
It would be more natural to prove from a1i 11 and ax-frege2 43764 in Metamath. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
| ⊢ (𝜑 → ((𝜓 → (𝜒 → 𝜃)) → ((𝜓 → 𝜒) → (𝜓 → 𝜃)))) | ||
| Theorem | frege3 43768 | Add antecedent to ax-frege2 43764. Special case of rp-frege3g 43767. Proposition 3 of [Frege1879] p. 29. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
| ⊢ ((𝜑 → 𝜓) → ((𝜒 → (𝜑 → 𝜓)) → ((𝜒 → 𝜑) → (𝜒 → 𝜓)))) | ||
| Theorem | rp-misc1-frege 43769 | Double-use of ax-frege2 43764. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
| ⊢ (((𝜑 → (𝜓 → 𝜒)) → (𝜑 → 𝜓)) → ((𝜑 → (𝜓 → 𝜒)) → (𝜑 → 𝜒))) | ||
| Theorem | rp-frege24 43770 | Introducing an embedded antecedent. Alternate proof for frege24 43788. Closed form for a1d 25. (Contributed by RP, 24-Dec-2019.) |
| ⊢ ((𝜑 → 𝜓) → (𝜑 → (𝜒 → 𝜓))) | ||
| Theorem | rp-frege4g 43771 | Deduction related to distribution. (Contributed by RP, 24-Dec-2019.) |
| ⊢ ((𝜑 → (𝜓 → (𝜒 → 𝜃))) → (𝜑 → ((𝜓 → 𝜒) → (𝜓 → 𝜃)))) | ||
| Theorem | frege4 43772 | Special case of closed form of a2d 29. Special case of rp-frege4g 43771. Proposition 4 of [Frege1879] p. 31. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
| ⊢ (((𝜑 → 𝜓) → (𝜒 → (𝜑 → 𝜓))) → ((𝜑 → 𝜓) → ((𝜒 → 𝜑) → (𝜒 → 𝜓)))) | ||
| Theorem | frege5 43773 | A closed form of syl 17. Identical to imim2 58. Theorem *2.05 of [WhiteheadRussell] p. 100. Proposition 5 of [Frege1879] p. 32. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
| ⊢ ((𝜑 → 𝜓) → ((𝜒 → 𝜑) → (𝜒 → 𝜓))) | ||
| Theorem | rp-7frege 43774 | Distribute antecedent and add another. (Contributed by RP, 24-Dec-2019.) |
| ⊢ ((𝜑 → (𝜓 → 𝜒)) → (𝜃 → ((𝜑 → 𝜓) → (𝜑 → 𝜒)))) | ||
| Theorem | rp-4frege 43775 | Elimination of a nested antecedent of special form. (Contributed by RP, 24-Dec-2019.) |
| ⊢ ((𝜑 → ((𝜓 → 𝜑) → 𝜒)) → (𝜑 → 𝜒)) | ||
| Theorem | rp-6frege 43776 | Elimination of a nested antecedent of special form. (Contributed by RP, 24-Dec-2019.) |
| ⊢ (𝜑 → ((𝜓 → ((𝜒 → 𝜓) → 𝜃)) → (𝜓 → 𝜃))) | ||
| Theorem | rp-8frege 43777 | Eliminate antecedent when it is implied by previous antecedent. (Contributed by RP, 24-Dec-2019.) |
| ⊢ ((𝜑 → (𝜓 → ((𝜒 → 𝜓) → 𝜃))) → (𝜑 → (𝜓 → 𝜃))) | ||
| Theorem | rp-frege25 43778 | Closed form for a1dd 50. Alternate route to Proposition 25 of [Frege1879] p. 42. (Contributed by RP, 24-Dec-2019.) |
| ⊢ ((𝜑 → (𝜓 → 𝜒)) → (𝜑 → (𝜓 → (𝜃 → 𝜒)))) | ||
| Theorem | frege6 43779 | A closed form of imim2d 57 which is a deduction adding nested antecedents. Proposition 6 of [Frege1879] p. 33. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
| ⊢ ((𝜑 → (𝜓 → 𝜒)) → (𝜑 → ((𝜃 → 𝜓) → (𝜃 → 𝜒)))) | ||
| Theorem | axfrege8 43780 |
Swap antecedents. Identical to pm2.04 90. This demonstrates that Axiom 8
of [Frege1879] p. 35 is redundant.
Proof follows closely proof of pm2.04 90 in https://us.metamath.org/mmsolitaire/pmproofs.txt 90, but in the style of Frege's 1879 work. (Contributed by RP, 24-Dec-2019.) (New usage is discouraged.) (Proof modification is discouraged.) |
| ⊢ ((𝜑 → (𝜓 → 𝜒)) → (𝜓 → (𝜑 → 𝜒))) | ||
| Theorem | frege7 43781 | A closed form of syl6 35. The first antecedent is used to replace the consequent of the second antecedent. Proposition 7 of [Frege1879] p. 34. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
| ⊢ ((𝜑 → 𝜓) → ((𝜒 → (𝜃 → 𝜑)) → (𝜒 → (𝜃 → 𝜓)))) | ||
| Axiom | ax-frege8 43782 | Swap antecedents. If two conditions have a proposition as a consequence, their order is immaterial. Third axiom of Frege's 1879 work but identical to pm2.04 90 which can be proved from only ax-mp 5, ax-frege1 43763, and ax-frege2 43764. (Redundant) Axiom 8 of [Frege1879] p. 35. (Contributed by RP, 24-Dec-2019.) (New usage is discouraged.) |
| ⊢ ((𝜑 → (𝜓 → 𝜒)) → (𝜓 → (𝜑 → 𝜒))) | ||
| Theorem | frege26 43783 | Identical to idd 24. Proposition 26 of [Frege1879] p. 42. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
| ⊢ (𝜑 → (𝜓 → 𝜓)) | ||
| Theorem | frege27 43784 | We cannot (at the same time) affirm 𝜑 and deny 𝜑. Identical to id 22. Proposition 27 of [Frege1879] p. 43. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
| ⊢ (𝜑 → 𝜑) | ||
| Theorem | frege9 43785 | Closed form of syl 17 with swapped antecedents. This proposition differs from frege5 43773 only in an unessential way. Identical to imim1 83. Proposition 9 of [Frege1879] p. 35. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
| ⊢ ((𝜑 → 𝜓) → ((𝜓 → 𝜒) → (𝜑 → 𝜒))) | ||
| Theorem | frege12 43786 | A closed form of com23 86. Proposition 12 of [Frege1879] p. 37. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
| ⊢ ((𝜑 → (𝜓 → (𝜒 → 𝜃))) → (𝜑 → (𝜒 → (𝜓 → 𝜃)))) | ||
| Theorem | frege11 43787 | Elimination of a nested antecedent as a partial converse of ja 186. If the proposition that 𝜓 takes place or 𝜑 does not is a sufficient condition for 𝜒, then 𝜓 by itself is a sufficient condition for 𝜒. Identical to jarr 106. Proposition 11 of [Frege1879] p. 36. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
| ⊢ (((𝜑 → 𝜓) → 𝜒) → (𝜓 → 𝜒)) | ||
| Theorem | frege24 43788 | Closed form for a1d 25. Deduction introducing an embedded antecedent. Identical to rp-frege24 43770 which was proved without relying on ax-frege8 43782. Proposition 24 of [Frege1879] p. 42. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
| ⊢ ((𝜑 → 𝜓) → (𝜑 → (𝜒 → 𝜓))) | ||
| Theorem | frege16 43789 | A closed form of com34 91. Proposition 16 of [Frege1879] p. 38. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
| ⊢ ((𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) → (𝜑 → (𝜓 → (𝜃 → (𝜒 → 𝜏))))) | ||
| Theorem | frege25 43790 | Closed form for a1dd 50. Proposition 25 of [Frege1879] p. 42. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
| ⊢ ((𝜑 → (𝜓 → 𝜒)) → (𝜑 → (𝜓 → (𝜃 → 𝜒)))) | ||
| Theorem | frege18 43791 | Closed form of a syllogism followed by a swap of antecedents. Proposition 18 of [Frege1879] p. 39. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
| ⊢ ((𝜑 → (𝜓 → 𝜒)) → ((𝜃 → 𝜑) → (𝜓 → (𝜃 → 𝜒)))) | ||
| Theorem | frege22 43792 | A closed form of com45 97. Proposition 22 of [Frege1879] p. 41. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
| ⊢ ((𝜑 → (𝜓 → (𝜒 → (𝜃 → (𝜏 → 𝜂))))) → (𝜑 → (𝜓 → (𝜒 → (𝜏 → (𝜃 → 𝜂)))))) | ||
| Theorem | frege10 43793 | Result commuting antecedents within an antecedent. Proposition 10 of [Frege1879] p. 36. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
| ⊢ (((𝜑 → (𝜓 → 𝜒)) → 𝜃) → ((𝜓 → (𝜑 → 𝜒)) → 𝜃)) | ||
| Theorem | frege17 43794 | A closed form of com3l 89. Proposition 17 of [Frege1879] p. 39. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
| ⊢ ((𝜑 → (𝜓 → (𝜒 → 𝜃))) → (𝜓 → (𝜒 → (𝜑 → 𝜃)))) | ||
| Theorem | frege13 43795 | A closed form of com3r 87. Proposition 13 of [Frege1879] p. 37. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
| ⊢ ((𝜑 → (𝜓 → (𝜒 → 𝜃))) → (𝜒 → (𝜑 → (𝜓 → 𝜃)))) | ||
| Theorem | frege14 43796 | Closed form of a deduction based on com3r 87. Proposition 14 of [Frege1879] p. 37. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
| ⊢ ((𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) → (𝜑 → (𝜃 → (𝜓 → (𝜒 → 𝜏))))) | ||
| Theorem | frege19 43797 | A closed form of syl6 35. Proposition 19 of [Frege1879] p. 39. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
| ⊢ ((𝜑 → (𝜓 → 𝜒)) → ((𝜒 → 𝜃) → (𝜑 → (𝜓 → 𝜃)))) | ||
| Theorem | frege23 43798 | Syllogism followed by rotation of three antecedents. Proposition 23 of [Frege1879] p. 42. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
| ⊢ ((𝜑 → (𝜓 → (𝜒 → 𝜃))) → ((𝜏 → 𝜑) → (𝜓 → (𝜒 → (𝜏 → 𝜃))))) | ||
| Theorem | frege15 43799 | A closed form of com4r 94. Proposition 15 of [Frege1879] p. 38. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
| ⊢ ((𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) → (𝜃 → (𝜑 → (𝜓 → (𝜒 → 𝜏))))) | ||
| Theorem | frege21 43800 | Replace antecedent in antecedent. Proposition 21 of [Frege1879] p. 40. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
| ⊢ (((𝜑 → 𝜓) → 𝜒) → ((𝜑 → 𝜃) → ((𝜃 → 𝜓) → 𝜒))) | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |