![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > syl3c | Structured version Visualization version GIF version |
Description: A syllogism inference combined with contraction. (Contributed by Alan Sare, 7-Jul-2011.) |
Ref | Expression |
---|---|
syl3c.1 | ⊢ (𝜑 → 𝜓) |
syl3c.2 | ⊢ (𝜑 → 𝜒) |
syl3c.3 | ⊢ (𝜑 → 𝜃) |
syl3c.4 | ⊢ (𝜓 → (𝜒 → (𝜃 → 𝜏))) |
Ref | Expression |
---|---|
syl3c | ⊢ (𝜑 → 𝜏) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | syl3c.3 | . 2 ⊢ (𝜑 → 𝜃) | |
2 | syl3c.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
3 | syl3c.2 | . . 3 ⊢ (𝜑 → 𝜒) | |
4 | syl3c.4 | . . 3 ⊢ (𝜓 → (𝜒 → (𝜃 → 𝜏))) | |
5 | 2, 3, 4 | sylc 65 | . 2 ⊢ (𝜑 → (𝜃 → 𝜏)) |
6 | 1, 5 | mpd 15 | 1 ⊢ (𝜑 → 𝜏) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
This theorem is referenced by: fodomr 9128 dffi3 9426 cantnflt 9667 cantnflem1 9684 axdc3lem2 10446 seqf1olem2 14008 wrd2ind 14673 relexpindlem 15010 rtrclind 15012 o1fsum 15759 lcmneg 16540 prmind2 16622 rami 16948 ramcl 16962 pslem 18525 telgsums 19861 islbs3 20768 psgndif 21155 mplsubglem 21558 mpllsslem 21559 gsummatr01lem4 22160 lmmo 22884 cnmpt12 23171 cnmpt22 23178 filss 23357 flimopn 23479 flimrest 23487 cfil3i 24786 equivcfil 24816 equivcau 24817 ovolicc2lem3 25036 limciun 25411 dvcnvrelem1 25534 dvfsumrlim 25548 dvfsum2 25551 dgrco 25789 scvxcvx 26490 ftalem3 26579 2sqlem6 26926 2sqlem8 26929 dchrisumlema 26991 dchrisumlem2 26993 addsproplem1 27453 negsproplem1 27502 gropd 28291 grstructd 28292 pthdepisspth 28992 pjoi0 30970 atomli 31635 archirng 32334 archiabllem1a 32337 archiabllem2a 32340 archiabl 32344 crefi 32827 pcmplfin 32840 sigaclcu 33115 measvun 33207 signsply0 33562 bnj1128 34001 bnj1204 34023 bnj1417 34052 neibastop2lem 35245 poimirlem31 36519 ftc1cnnclem 36559 sdclem2 36610 heibor1lem 36677 cvrat4 38314 hdmapval2 40703 ismrcd1 41436 relexpxpmin 42468 ee222 43263 ee333 43268 ee1111 43277 sbcoreleleq 43296 ordelordALT 43298 trsbc 43301 ee110 43438 ee101 43440 ee011 43442 ee100 43444 ee010 43446 ee001 43448 eel11111 43484 fnchoice 43713 fiiuncl 43752 mullimc 44332 islptre 44335 mullimcf 44339 addlimc 44364 stoweidlem20 44736 stoweidlem59 44775 perfectALTVlem2 46390 |
Copyright terms: Public domain | W3C validator |