| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > syl3c | Structured version Visualization version GIF version | ||
| Description: A syllogism inference combined with contraction. (Contributed by Alan Sare, 7-Jul-2011.) |
| Ref | Expression |
|---|---|
| syl3c.1 | ⊢ (𝜑 → 𝜓) |
| syl3c.2 | ⊢ (𝜑 → 𝜒) |
| syl3c.3 | ⊢ (𝜑 → 𝜃) |
| syl3c.4 | ⊢ (𝜓 → (𝜒 → (𝜃 → 𝜏))) |
| Ref | Expression |
|---|---|
| syl3c | ⊢ (𝜑 → 𝜏) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | syl3c.3 | . 2 ⊢ (𝜑 → 𝜃) | |
| 2 | syl3c.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
| 3 | syl3c.2 | . . 3 ⊢ (𝜑 → 𝜒) | |
| 4 | syl3c.4 | . . 3 ⊢ (𝜓 → (𝜒 → (𝜃 → 𝜏))) | |
| 5 | 2, 3, 4 | sylc 65 | . 2 ⊢ (𝜑 → (𝜃 → 𝜏)) |
| 6 | 1, 5 | mpd 15 | 1 ⊢ (𝜑 → 𝜏) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
| This theorem is referenced by: fodomr 9168 dffi3 9471 cantnflt 9712 cantnflem1 9729 axdc3lem2 10491 seqf1olem2 14083 wrd2ind 14761 relexpindlem 15102 rtrclind 15104 o1fsum 15849 lcmneg 16640 prmind2 16722 rami 17053 ramcl 17067 pslem 18617 telgsums 20011 islbs3 21157 psgndif 21620 mplsubglem 22019 mpllsslem 22020 gsummatr01lem4 22664 lmmo 23388 cnmpt12 23675 cnmpt22 23682 filss 23861 flimopn 23983 flimrest 23991 cfil3i 25303 equivcfil 25333 equivcau 25334 ovolicc2lem3 25554 limciun 25929 dvcnvrelem1 26056 dvfsumrlim 26072 dvfsum2 26075 dgrco 26315 scvxcvx 27029 ftalem3 27118 2sqlem6 27467 2sqlem8 27470 dchrisumlema 27532 dchrisumlem2 27534 addsproplem1 28002 negsproplem1 28060 gropd 29048 grstructd 29049 pthdepisspth 29755 pjoi0 31736 atomli 32401 archirng 33195 archiabllem1a 33198 archiabllem2a 33201 archiabl 33205 crefi 33846 pcmplfin 33859 sigaclcu 34118 measvun 34210 signsply0 34566 bnj1128 35004 bnj1204 35026 bnj1417 35055 neibastop2lem 36361 poimirlem31 37658 ftc1cnnclem 37698 sdclem2 37749 heibor1lem 37816 cvrat4 39445 hdmapval2 41834 ismrcd1 42709 relexpxpmin 43730 ee222 44522 ee333 44527 ee1111 44536 sbcoreleleq 44555 ordelordALT 44557 trsbc 44560 ee110 44697 ee101 44699 ee011 44701 ee100 44703 ee010 44705 ee001 44707 eel11111 44743 fnchoice 45034 fiiuncl 45070 mullimc 45631 islptre 45634 mullimcf 45638 addlimc 45663 stoweidlem20 46035 stoweidlem59 46074 perfectALTVlem2 47709 |
| Copyright terms: Public domain | W3C validator |