| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > syl3c | Structured version Visualization version GIF version | ||
| Description: A syllogism inference combined with contraction. (Contributed by Alan Sare, 7-Jul-2011.) |
| Ref | Expression |
|---|---|
| syl3c.1 | ⊢ (𝜑 → 𝜓) |
| syl3c.2 | ⊢ (𝜑 → 𝜒) |
| syl3c.3 | ⊢ (𝜑 → 𝜃) |
| syl3c.4 | ⊢ (𝜓 → (𝜒 → (𝜃 → 𝜏))) |
| Ref | Expression |
|---|---|
| syl3c | ⊢ (𝜑 → 𝜏) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | syl3c.3 | . 2 ⊢ (𝜑 → 𝜃) | |
| 2 | syl3c.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
| 3 | syl3c.2 | . . 3 ⊢ (𝜑 → 𝜒) | |
| 4 | syl3c.4 | . . 3 ⊢ (𝜓 → (𝜒 → (𝜃 → 𝜏))) | |
| 5 | 2, 3, 4 | sylc 65 | . 2 ⊢ (𝜑 → (𝜃 → 𝜏)) |
| 6 | 1, 5 | mpd 15 | 1 ⊢ (𝜑 → 𝜏) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
| This theorem is referenced by: fodomr 9052 dffi3 9340 cantnflt 9587 cantnflem1 9604 axdc3lem2 10364 seqf1olem2 13967 wrd2ind 14647 relexpindlem 14988 rtrclind 14990 o1fsum 15738 lcmneg 16532 prmind2 16614 rami 16945 ramcl 16959 pslem 18496 telgsums 19890 islbs3 21080 psgndif 21527 mplsubglem 21924 mpllsslem 21925 gsummatr01lem4 22561 lmmo 23283 cnmpt12 23570 cnmpt22 23577 filss 23756 flimopn 23878 flimrest 23886 cfil3i 25185 equivcfil 25215 equivcau 25216 ovolicc2lem3 25436 limciun 25811 dvcnvrelem1 25938 dvfsumrlim 25954 dvfsum2 25957 dgrco 26197 scvxcvx 26912 ftalem3 27001 2sqlem6 27350 2sqlem8 27353 dchrisumlema 27415 dchrisumlem2 27417 addsproplem1 27899 negsproplem1 27957 gropd 28994 grstructd 28995 pthdepisspth 29698 pjoi0 31679 atomli 32344 archirng 33140 archiabllem1a 33143 archiabllem2a 33146 archiabl 33150 crefi 33813 pcmplfin 33826 sigaclcu 34083 measvun 34175 signsply0 34518 bnj1128 34956 bnj1204 34978 bnj1417 35007 neibastop2lem 36333 poimirlem31 37630 ftc1cnnclem 37670 sdclem2 37721 heibor1lem 37788 cvrat4 39422 hdmapval2 41811 ismrcd1 42671 relexpxpmin 43690 ee222 44476 ee333 44481 ee1111 44490 sbcoreleleq 44509 ordelordALT 44511 trsbc 44514 ee110 44651 ee101 44653 ee011 44655 ee100 44657 ee010 44659 ee001 44661 eel11111 44696 fnchoice 45007 fiiuncl 45043 mullimc 45598 islptre 45601 mullimcf 45605 addlimc 45630 stoweidlem20 46002 stoweidlem59 46041 perfectALTVlem2 47707 |
| Copyright terms: Public domain | W3C validator |