| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > syl3c | Structured version Visualization version GIF version | ||
| Description: A syllogism inference combined with contraction. (Contributed by Alan Sare, 7-Jul-2011.) |
| Ref | Expression |
|---|---|
| syl3c.1 | ⊢ (𝜑 → 𝜓) |
| syl3c.2 | ⊢ (𝜑 → 𝜒) |
| syl3c.3 | ⊢ (𝜑 → 𝜃) |
| syl3c.4 | ⊢ (𝜓 → (𝜒 → (𝜃 → 𝜏))) |
| Ref | Expression |
|---|---|
| syl3c | ⊢ (𝜑 → 𝜏) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | syl3c.3 | . 2 ⊢ (𝜑 → 𝜃) | |
| 2 | syl3c.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
| 3 | syl3c.2 | . . 3 ⊢ (𝜑 → 𝜒) | |
| 4 | syl3c.4 | . . 3 ⊢ (𝜓 → (𝜒 → (𝜃 → 𝜏))) | |
| 5 | 2, 3, 4 | sylc 65 | . 2 ⊢ (𝜑 → (𝜃 → 𝜏)) |
| 6 | 1, 5 | mpd 15 | 1 ⊢ (𝜑 → 𝜏) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
| This theorem is referenced by: fodomr 9048 dffi3 9322 cantnflt 9569 cantnflem1 9586 axdc3lem2 10349 seqf1olem2 13951 wrd2ind 14632 relexpindlem 14972 rtrclind 14974 o1fsum 15722 lcmneg 16516 prmind2 16598 rami 16929 ramcl 16943 pslem 18480 telgsums 19907 islbs3 21094 psgndif 21541 mplsubglem 21937 mpllsslem 21938 gsummatr01lem4 22574 lmmo 23296 cnmpt12 23583 cnmpt22 23590 filss 23769 flimopn 23891 flimrest 23899 cfil3i 25197 equivcfil 25227 equivcau 25228 ovolicc2lem3 25448 limciun 25823 dvcnvrelem1 25950 dvfsumrlim 25966 dvfsum2 25969 dgrco 26209 scvxcvx 26924 ftalem3 27013 2sqlem6 27362 2sqlem8 27365 dchrisumlema 27427 dchrisumlem2 27429 addsproplem1 27913 negsproplem1 27971 gropd 29011 grstructd 29012 pthdepisspth 29715 pjoi0 31699 atomli 32364 archirng 33164 archiabllem1a 33167 archiabllem2a 33170 archiabl 33174 crefi 33881 pcmplfin 33894 sigaclcu 34151 measvun 34243 signsply0 34585 bnj1128 35023 bnj1204 35045 bnj1417 35074 neibastop2lem 36425 poimirlem31 37711 ftc1cnnclem 37751 sdclem2 37802 heibor1lem 37869 cvrat4 39562 hdmapval2 41951 ismrcd1 42815 relexpxpmin 43834 ee222 44619 ee333 44624 ee1111 44633 sbcoreleleq 44652 ordelordALT 44654 trsbc 44657 ee110 44794 ee101 44796 ee011 44798 ee100 44800 ee010 44802 ee001 44804 eel11111 44839 fnchoice 45150 fiiuncl 45186 mullimc 45740 islptre 45743 mullimcf 45747 addlimc 45770 stoweidlem20 46142 stoweidlem59 46181 perfectALTVlem2 47846 |
| Copyright terms: Public domain | W3C validator |