| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > syl3c | Structured version Visualization version GIF version | ||
| Description: A syllogism inference combined with contraction. (Contributed by Alan Sare, 7-Jul-2011.) |
| Ref | Expression |
|---|---|
| syl3c.1 | ⊢ (𝜑 → 𝜓) |
| syl3c.2 | ⊢ (𝜑 → 𝜒) |
| syl3c.3 | ⊢ (𝜑 → 𝜃) |
| syl3c.4 | ⊢ (𝜓 → (𝜒 → (𝜃 → 𝜏))) |
| Ref | Expression |
|---|---|
| syl3c | ⊢ (𝜑 → 𝜏) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | syl3c.3 | . 2 ⊢ (𝜑 → 𝜃) | |
| 2 | syl3c.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
| 3 | syl3c.2 | . . 3 ⊢ (𝜑 → 𝜒) | |
| 4 | syl3c.4 | . . 3 ⊢ (𝜓 → (𝜒 → (𝜃 → 𝜏))) | |
| 5 | 2, 3, 4 | sylc 65 | . 2 ⊢ (𝜑 → (𝜃 → 𝜏)) |
| 6 | 1, 5 | mpd 15 | 1 ⊢ (𝜑 → 𝜏) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
| This theorem is referenced by: fodomr 9092 dffi3 9382 cantnflt 9625 cantnflem1 9642 axdc3lem2 10404 seqf1olem2 14007 wrd2ind 14688 relexpindlem 15029 rtrclind 15031 o1fsum 15779 lcmneg 16573 prmind2 16655 rami 16986 ramcl 17000 pslem 18531 telgsums 19923 islbs3 21065 psgndif 21511 mplsubglem 21908 mpllsslem 21909 gsummatr01lem4 22545 lmmo 23267 cnmpt12 23554 cnmpt22 23561 filss 23740 flimopn 23862 flimrest 23870 cfil3i 25169 equivcfil 25199 equivcau 25200 ovolicc2lem3 25420 limciun 25795 dvcnvrelem1 25922 dvfsumrlim 25938 dvfsum2 25941 dgrco 26181 scvxcvx 26896 ftalem3 26985 2sqlem6 27334 2sqlem8 27337 dchrisumlema 27399 dchrisumlem2 27401 addsproplem1 27876 negsproplem1 27934 gropd 28958 grstructd 28959 pthdepisspth 29665 pjoi0 31646 atomli 32311 archirng 33142 archiabllem1a 33145 archiabllem2a 33148 archiabl 33152 crefi 33837 pcmplfin 33850 sigaclcu 34107 measvun 34199 signsply0 34542 bnj1128 34980 bnj1204 35002 bnj1417 35031 neibastop2lem 36348 poimirlem31 37645 ftc1cnnclem 37685 sdclem2 37736 heibor1lem 37803 cvrat4 39437 hdmapval2 41826 ismrcd1 42686 relexpxpmin 43706 ee222 44492 ee333 44497 ee1111 44506 sbcoreleleq 44525 ordelordALT 44527 trsbc 44530 ee110 44667 ee101 44669 ee011 44671 ee100 44673 ee010 44675 ee001 44677 eel11111 44712 fnchoice 45023 fiiuncl 45059 mullimc 45614 islptre 45617 mullimcf 45621 addlimc 45646 stoweidlem20 46018 stoweidlem59 46057 perfectALTVlem2 47723 |
| Copyright terms: Public domain | W3C validator |