| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > syl3c | Structured version Visualization version GIF version | ||
| Description: A syllogism inference combined with contraction. (Contributed by Alan Sare, 7-Jul-2011.) |
| Ref | Expression |
|---|---|
| syl3c.1 | ⊢ (𝜑 → 𝜓) |
| syl3c.2 | ⊢ (𝜑 → 𝜒) |
| syl3c.3 | ⊢ (𝜑 → 𝜃) |
| syl3c.4 | ⊢ (𝜓 → (𝜒 → (𝜃 → 𝜏))) |
| Ref | Expression |
|---|---|
| syl3c | ⊢ (𝜑 → 𝜏) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | syl3c.3 | . 2 ⊢ (𝜑 → 𝜃) | |
| 2 | syl3c.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
| 3 | syl3c.2 | . . 3 ⊢ (𝜑 → 𝜒) | |
| 4 | syl3c.4 | . . 3 ⊢ (𝜓 → (𝜒 → (𝜃 → 𝜏))) | |
| 5 | 2, 3, 4 | sylc 65 | . 2 ⊢ (𝜑 → (𝜃 → 𝜏)) |
| 6 | 1, 5 | mpd 15 | 1 ⊢ (𝜑 → 𝜏) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
| This theorem is referenced by: fodomr 9041 dffi3 9315 cantnflt 9562 cantnflem1 9579 axdc3lem2 10339 seqf1olem2 13946 wrd2ind 14627 relexpindlem 14967 rtrclind 14969 o1fsum 15717 lcmneg 16511 prmind2 16593 rami 16924 ramcl 16938 pslem 18475 telgsums 19903 islbs3 21090 psgndif 21537 mplsubglem 21934 mpllsslem 21935 gsummatr01lem4 22571 lmmo 23293 cnmpt12 23580 cnmpt22 23587 filss 23766 flimopn 23888 flimrest 23896 cfil3i 25194 equivcfil 25224 equivcau 25225 ovolicc2lem3 25445 limciun 25820 dvcnvrelem1 25947 dvfsumrlim 25963 dvfsum2 25966 dgrco 26206 scvxcvx 26921 ftalem3 27010 2sqlem6 27359 2sqlem8 27362 dchrisumlema 27424 dchrisumlem2 27426 addsproplem1 27910 negsproplem1 27968 gropd 29007 grstructd 29008 pthdepisspth 29711 pjoi0 31692 atomli 32357 archirng 33152 archiabllem1a 33155 archiabllem2a 33158 archiabl 33162 crefi 33855 pcmplfin 33868 sigaclcu 34125 measvun 34217 signsply0 34559 bnj1128 34997 bnj1204 35019 bnj1417 35048 neibastop2lem 36393 poimirlem31 37690 ftc1cnnclem 37730 sdclem2 37781 heibor1lem 37848 cvrat4 39481 hdmapval2 41870 ismrcd1 42730 relexpxpmin 43749 ee222 44534 ee333 44539 ee1111 44548 sbcoreleleq 44567 ordelordALT 44569 trsbc 44572 ee110 44709 ee101 44711 ee011 44713 ee100 44715 ee010 44717 ee001 44719 eel11111 44754 fnchoice 45065 fiiuncl 45101 mullimc 45655 islptre 45658 mullimcf 45662 addlimc 45685 stoweidlem20 46057 stoweidlem59 46096 perfectALTVlem2 47752 |
| Copyright terms: Public domain | W3C validator |