Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > syl3c | Structured version Visualization version GIF version |
Description: A syllogism inference combined with contraction. (Contributed by Alan Sare, 7-Jul-2011.) |
Ref | Expression |
---|---|
syl3c.1 | ⊢ (𝜑 → 𝜓) |
syl3c.2 | ⊢ (𝜑 → 𝜒) |
syl3c.3 | ⊢ (𝜑 → 𝜃) |
syl3c.4 | ⊢ (𝜓 → (𝜒 → (𝜃 → 𝜏))) |
Ref | Expression |
---|---|
syl3c | ⊢ (𝜑 → 𝜏) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | syl3c.3 | . 2 ⊢ (𝜑 → 𝜃) | |
2 | syl3c.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
3 | syl3c.2 | . . 3 ⊢ (𝜑 → 𝜒) | |
4 | syl3c.4 | . . 3 ⊢ (𝜓 → (𝜒 → (𝜃 → 𝜏))) | |
5 | 2, 3, 4 | sylc 65 | . 2 ⊢ (𝜑 → (𝜃 → 𝜏)) |
6 | 1, 5 | mpd 15 | 1 ⊢ (𝜑 → 𝜏) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
This theorem is referenced by: fodomr 8915 dffi3 9190 cantnflt 9430 cantnflem1 9447 axdc3lem2 10207 seqf1olem2 13763 wrd2ind 14436 relexpindlem 14774 rtrclind 14776 o1fsum 15525 lcmneg 16308 prmind2 16390 rami 16716 ramcl 16730 pslem 18290 telgsums 19594 islbs3 20417 psgndif 20807 mplsubglem 21205 mpllsslem 21206 gsummatr01lem4 21807 lmmo 22531 cnmpt12 22818 cnmpt22 22825 filss 23004 flimopn 23126 flimrest 23134 cfil3i 24433 equivcfil 24463 equivcau 24464 ovolicc2lem3 24683 limciun 25058 dvcnvrelem1 25181 dvfsumrlim 25195 dvfsum2 25198 dgrco 25436 scvxcvx 26135 ftalem3 26224 2sqlem6 26571 2sqlem8 26574 dchrisumlema 26636 dchrisumlem2 26638 gropd 27401 grstructd 27402 pthdepisspth 28103 pjoi0 30079 atomli 30744 archirng 31442 archiabllem1a 31445 archiabllem2a 31448 archiabl 31452 crefi 31797 pcmplfin 31810 sigaclcu 32085 measvun 32177 signsply0 32530 bnj1128 32970 bnj1204 32992 bnj1417 33021 neibastop2lem 34549 poimirlem31 35808 ftc1cnnclem 35848 sdclem2 35900 heibor1lem 35967 cvrat4 37457 hdmapval2 39846 ismrcd1 40520 relexpxpmin 41325 ee222 42122 ee333 42127 ee1111 42136 sbcoreleleq 42155 ordelordALT 42157 trsbc 42160 ee110 42297 ee101 42299 ee011 42301 ee100 42303 ee010 42305 ee001 42307 eel11111 42343 fnchoice 42572 fiiuncl 42613 mullimc 43157 islptre 43160 mullimcf 43164 addlimc 43189 stoweidlem20 43561 stoweidlem59 43600 perfectALTVlem2 45174 |
Copyright terms: Public domain | W3C validator |