![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > syl3c | Structured version Visualization version GIF version |
Description: A syllogism inference combined with contraction. (Contributed by Alan Sare, 7-Jul-2011.) |
Ref | Expression |
---|---|
syl3c.1 | ⊢ (𝜑 → 𝜓) |
syl3c.2 | ⊢ (𝜑 → 𝜒) |
syl3c.3 | ⊢ (𝜑 → 𝜃) |
syl3c.4 | ⊢ (𝜓 → (𝜒 → (𝜃 → 𝜏))) |
Ref | Expression |
---|---|
syl3c | ⊢ (𝜑 → 𝜏) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | syl3c.3 | . 2 ⊢ (𝜑 → 𝜃) | |
2 | syl3c.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
3 | syl3c.2 | . . 3 ⊢ (𝜑 → 𝜒) | |
4 | syl3c.4 | . . 3 ⊢ (𝜓 → (𝜒 → (𝜃 → 𝜏))) | |
5 | 2, 3, 4 | sylc 65 | . 2 ⊢ (𝜑 → (𝜃 → 𝜏)) |
6 | 1, 5 | mpd 15 | 1 ⊢ (𝜑 → 𝜏) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
This theorem is referenced by: fodomr 9166 dffi3 9468 cantnflt 9709 cantnflem1 9726 axdc3lem2 10488 seqf1olem2 14079 wrd2ind 14757 relexpindlem 15098 rtrclind 15100 o1fsum 15845 lcmneg 16636 prmind2 16718 rami 17048 ramcl 17062 pslem 18629 telgsums 20025 islbs3 21174 psgndif 21637 mplsubglem 22036 mpllsslem 22037 gsummatr01lem4 22679 lmmo 23403 cnmpt12 23690 cnmpt22 23697 filss 23876 flimopn 23998 flimrest 24006 cfil3i 25316 equivcfil 25346 equivcau 25347 ovolicc2lem3 25567 limciun 25943 dvcnvrelem1 26070 dvfsumrlim 26086 dvfsum2 26089 dgrco 26329 scvxcvx 27043 ftalem3 27132 2sqlem6 27481 2sqlem8 27484 dchrisumlema 27546 dchrisumlem2 27548 addsproplem1 28016 negsproplem1 28074 gropd 29062 grstructd 29063 pthdepisspth 29767 pjoi0 31745 atomli 32410 archirng 33177 archiabllem1a 33180 archiabllem2a 33183 archiabl 33187 crefi 33807 pcmplfin 33820 sigaclcu 34097 measvun 34189 signsply0 34544 bnj1128 34982 bnj1204 35004 bnj1417 35033 neibastop2lem 36342 poimirlem31 37637 ftc1cnnclem 37677 sdclem2 37728 heibor1lem 37795 cvrat4 39425 hdmapval2 41814 ismrcd1 42685 relexpxpmin 43706 ee222 44499 ee333 44504 ee1111 44513 sbcoreleleq 44532 ordelordALT 44534 trsbc 44537 ee110 44674 ee101 44676 ee011 44678 ee100 44680 ee010 44682 ee001 44684 eel11111 44720 fnchoice 44966 fiiuncl 45004 mullimc 45571 islptre 45574 mullimcf 45578 addlimc 45603 stoweidlem20 45975 stoweidlem59 46014 perfectALTVlem2 47646 |
Copyright terms: Public domain | W3C validator |