| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > syl3c | Structured version Visualization version GIF version | ||
| Description: A syllogism inference combined with contraction. (Contributed by Alan Sare, 7-Jul-2011.) |
| Ref | Expression |
|---|---|
| syl3c.1 | ⊢ (𝜑 → 𝜓) |
| syl3c.2 | ⊢ (𝜑 → 𝜒) |
| syl3c.3 | ⊢ (𝜑 → 𝜃) |
| syl3c.4 | ⊢ (𝜓 → (𝜒 → (𝜃 → 𝜏))) |
| Ref | Expression |
|---|---|
| syl3c | ⊢ (𝜑 → 𝜏) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | syl3c.3 | . 2 ⊢ (𝜑 → 𝜃) | |
| 2 | syl3c.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
| 3 | syl3c.2 | . . 3 ⊢ (𝜑 → 𝜒) | |
| 4 | syl3c.4 | . . 3 ⊢ (𝜓 → (𝜒 → (𝜃 → 𝜏))) | |
| 5 | 2, 3, 4 | sylc 65 | . 2 ⊢ (𝜑 → (𝜃 → 𝜏)) |
| 6 | 1, 5 | mpd 15 | 1 ⊢ (𝜑 → 𝜏) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
| This theorem is referenced by: fodomr 9142 dffi3 9443 cantnflt 9686 cantnflem1 9703 axdc3lem2 10465 seqf1olem2 14060 wrd2ind 14741 relexpindlem 15082 rtrclind 15084 o1fsum 15829 lcmneg 16622 prmind2 16704 rami 17035 ramcl 17049 pslem 18582 telgsums 19974 islbs3 21116 psgndif 21562 mplsubglem 21959 mpllsslem 21960 gsummatr01lem4 22596 lmmo 23318 cnmpt12 23605 cnmpt22 23612 filss 23791 flimopn 23913 flimrest 23921 cfil3i 25221 equivcfil 25251 equivcau 25252 ovolicc2lem3 25472 limciun 25847 dvcnvrelem1 25974 dvfsumrlim 25990 dvfsum2 25993 dgrco 26233 scvxcvx 26948 ftalem3 27037 2sqlem6 27386 2sqlem8 27389 dchrisumlema 27451 dchrisumlem2 27453 addsproplem1 27928 negsproplem1 27986 gropd 29010 grstructd 29011 pthdepisspth 29717 pjoi0 31698 atomli 32363 archirng 33186 archiabllem1a 33189 archiabllem2a 33192 archiabl 33196 crefi 33878 pcmplfin 33891 sigaclcu 34148 measvun 34240 signsply0 34583 bnj1128 35021 bnj1204 35043 bnj1417 35072 neibastop2lem 36378 poimirlem31 37675 ftc1cnnclem 37715 sdclem2 37766 heibor1lem 37833 cvrat4 39462 hdmapval2 41851 ismrcd1 42721 relexpxpmin 43741 ee222 44527 ee333 44532 ee1111 44541 sbcoreleleq 44560 ordelordALT 44562 trsbc 44565 ee110 44702 ee101 44704 ee011 44706 ee100 44708 ee010 44710 ee001 44712 eel11111 44747 fnchoice 45053 fiiuncl 45089 mullimc 45645 islptre 45648 mullimcf 45652 addlimc 45677 stoweidlem20 46049 stoweidlem59 46088 perfectALTVlem2 47736 |
| Copyright terms: Public domain | W3C validator |