| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > syl3c | Structured version Visualization version GIF version | ||
| Description: A syllogism inference combined with contraction. (Contributed by Alan Sare, 7-Jul-2011.) |
| Ref | Expression |
|---|---|
| syl3c.1 | ⊢ (𝜑 → 𝜓) |
| syl3c.2 | ⊢ (𝜑 → 𝜒) |
| syl3c.3 | ⊢ (𝜑 → 𝜃) |
| syl3c.4 | ⊢ (𝜓 → (𝜒 → (𝜃 → 𝜏))) |
| Ref | Expression |
|---|---|
| syl3c | ⊢ (𝜑 → 𝜏) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | syl3c.3 | . 2 ⊢ (𝜑 → 𝜃) | |
| 2 | syl3c.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
| 3 | syl3c.2 | . . 3 ⊢ (𝜑 → 𝜒) | |
| 4 | syl3c.4 | . . 3 ⊢ (𝜓 → (𝜒 → (𝜃 → 𝜏))) | |
| 5 | 2, 3, 4 | sylc 65 | . 2 ⊢ (𝜑 → (𝜃 → 𝜏)) |
| 6 | 1, 5 | mpd 15 | 1 ⊢ (𝜑 → 𝜏) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
| This theorem is referenced by: fodomr 9098 dffi3 9389 cantnflt 9632 cantnflem1 9649 axdc3lem2 10411 seqf1olem2 14014 wrd2ind 14695 relexpindlem 15036 rtrclind 15038 o1fsum 15786 lcmneg 16580 prmind2 16662 rami 16993 ramcl 17007 pslem 18538 telgsums 19930 islbs3 21072 psgndif 21518 mplsubglem 21915 mpllsslem 21916 gsummatr01lem4 22552 lmmo 23274 cnmpt12 23561 cnmpt22 23568 filss 23747 flimopn 23869 flimrest 23877 cfil3i 25176 equivcfil 25206 equivcau 25207 ovolicc2lem3 25427 limciun 25802 dvcnvrelem1 25929 dvfsumrlim 25945 dvfsum2 25948 dgrco 26188 scvxcvx 26903 ftalem3 26992 2sqlem6 27341 2sqlem8 27344 dchrisumlema 27406 dchrisumlem2 27408 addsproplem1 27883 negsproplem1 27941 gropd 28965 grstructd 28966 pthdepisspth 29672 pjoi0 31653 atomli 32318 archirng 33149 archiabllem1a 33152 archiabllem2a 33155 archiabl 33159 crefi 33844 pcmplfin 33857 sigaclcu 34114 measvun 34206 signsply0 34549 bnj1128 34987 bnj1204 35009 bnj1417 35038 neibastop2lem 36355 poimirlem31 37652 ftc1cnnclem 37692 sdclem2 37743 heibor1lem 37810 cvrat4 39444 hdmapval2 41833 ismrcd1 42693 relexpxpmin 43713 ee222 44499 ee333 44504 ee1111 44513 sbcoreleleq 44532 ordelordALT 44534 trsbc 44537 ee110 44674 ee101 44676 ee011 44678 ee100 44680 ee010 44682 ee001 44684 eel11111 44719 fnchoice 45030 fiiuncl 45066 mullimc 45621 islptre 45624 mullimcf 45628 addlimc 45653 stoweidlem20 46025 stoweidlem59 46064 perfectALTVlem2 47727 |
| Copyright terms: Public domain | W3C validator |