Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > syl3c | Structured version Visualization version GIF version |
Description: A syllogism inference combined with contraction. (Contributed by Alan Sare, 7-Jul-2011.) |
Ref | Expression |
---|---|
syl3c.1 | ⊢ (𝜑 → 𝜓) |
syl3c.2 | ⊢ (𝜑 → 𝜒) |
syl3c.3 | ⊢ (𝜑 → 𝜃) |
syl3c.4 | ⊢ (𝜓 → (𝜒 → (𝜃 → 𝜏))) |
Ref | Expression |
---|---|
syl3c | ⊢ (𝜑 → 𝜏) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | syl3c.3 | . 2 ⊢ (𝜑 → 𝜃) | |
2 | syl3c.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
3 | syl3c.2 | . . 3 ⊢ (𝜑 → 𝜒) | |
4 | syl3c.4 | . . 3 ⊢ (𝜓 → (𝜒 → (𝜃 → 𝜏))) | |
5 | 2, 3, 4 | sylc 65 | . 2 ⊢ (𝜑 → (𝜃 → 𝜏)) |
6 | 1, 5 | mpd 15 | 1 ⊢ (𝜑 → 𝜏) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
This theorem is referenced by: fodomr 8897 dffi3 9168 cantnflt 9408 cantnflem1 9425 axdc3lem2 10208 seqf1olem2 13761 wrd2ind 14434 relexpindlem 14772 rtrclind 14774 o1fsum 15523 lcmneg 16306 prmind2 16388 rami 16714 ramcl 16728 pslem 18288 telgsums 19592 islbs3 20415 psgndif 20805 mplsubglem 21203 mpllsslem 21204 gsummatr01lem4 21805 lmmo 22529 cnmpt12 22816 cnmpt22 22823 filss 23002 flimopn 23124 flimrest 23132 cfil3i 24431 equivcfil 24461 equivcau 24462 ovolicc2lem3 24681 limciun 25056 dvcnvrelem1 25179 dvfsumrlim 25193 dvfsum2 25196 dgrco 25434 scvxcvx 26133 ftalem3 26222 2sqlem6 26569 2sqlem8 26572 dchrisumlema 26634 dchrisumlem2 26636 gropd 27399 grstructd 27400 pthdepisspth 28099 pjoi0 30075 atomli 30740 archirng 31438 archiabllem1a 31441 archiabllem2a 31444 archiabl 31448 crefi 31793 pcmplfin 31806 sigaclcu 32081 measvun 32173 signsply0 32526 bnj1128 32966 bnj1204 32988 bnj1417 33017 neibastop2lem 34545 poimirlem31 35804 ftc1cnnclem 35844 sdclem2 35896 heibor1lem 35963 cvrat4 37453 hdmapval2 39842 ismrcd1 40517 relexpxpmin 41295 ee222 42092 ee333 42097 ee1111 42106 sbcoreleleq 42125 ordelordALT 42127 trsbc 42130 ee110 42267 ee101 42269 ee011 42271 ee100 42273 ee010 42275 ee001 42277 eel11111 42313 fnchoice 42542 fiiuncl 42583 mullimc 43128 islptre 43131 mullimcf 43135 addlimc 43160 stoweidlem20 43532 stoweidlem59 43571 perfectALTVlem2 45143 |
Copyright terms: Public domain | W3C validator |