Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > syl3c | Structured version Visualization version GIF version |
Description: A syllogism inference combined with contraction. (Contributed by Alan Sare, 7-Jul-2011.) |
Ref | Expression |
---|---|
syl3c.1 | ⊢ (𝜑 → 𝜓) |
syl3c.2 | ⊢ (𝜑 → 𝜒) |
syl3c.3 | ⊢ (𝜑 → 𝜃) |
syl3c.4 | ⊢ (𝜓 → (𝜒 → (𝜃 → 𝜏))) |
Ref | Expression |
---|---|
syl3c | ⊢ (𝜑 → 𝜏) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | syl3c.3 | . 2 ⊢ (𝜑 → 𝜃) | |
2 | syl3c.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
3 | syl3c.2 | . . 3 ⊢ (𝜑 → 𝜒) | |
4 | syl3c.4 | . . 3 ⊢ (𝜓 → (𝜒 → (𝜃 → 𝜏))) | |
5 | 2, 3, 4 | sylc 65 | . 2 ⊢ (𝜑 → (𝜃 → 𝜏)) |
6 | 1, 5 | mpd 15 | 1 ⊢ (𝜑 → 𝜏) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
This theorem is referenced by: fodomr 8864 dffi3 9120 cantnflt 9360 cantnflem1 9377 axdc3lem2 10138 seqf1olem2 13691 wrd2ind 14364 relexpindlem 14702 rtrclind 14704 o1fsum 15453 lcmneg 16236 prmind2 16318 rami 16644 ramcl 16658 pslem 18205 telgsums 19509 islbs3 20332 psgndif 20719 mplsubglem 21115 mpllsslem 21116 gsummatr01lem4 21715 lmmo 22439 cnmpt12 22726 cnmpt22 22733 filss 22912 flimopn 23034 flimrest 23042 cfil3i 24338 equivcfil 24368 equivcau 24369 ovolicc2lem3 24588 limciun 24963 dvcnvrelem1 25086 dvfsumrlim 25100 dvfsum2 25103 dgrco 25341 scvxcvx 26040 ftalem3 26129 2sqlem6 26476 2sqlem8 26479 dchrisumlema 26541 dchrisumlem2 26543 gropd 27304 grstructd 27305 pthdepisspth 28004 pjoi0 29980 atomli 30645 archirng 31344 archiabllem1a 31347 archiabllem2a 31350 archiabl 31354 crefi 31699 pcmplfin 31712 sigaclcu 31985 measvun 32077 signsply0 32430 bnj1128 32870 bnj1204 32892 bnj1417 32921 neibastop2lem 34476 poimirlem31 35735 ftc1cnnclem 35775 sdclem2 35827 heibor1lem 35894 cvrat4 37384 hdmapval2 39773 ismrcd1 40436 relexpxpmin 41214 ee222 42011 ee333 42016 ee1111 42025 sbcoreleleq 42044 ordelordALT 42046 trsbc 42049 ee110 42186 ee101 42188 ee011 42190 ee100 42192 ee010 42194 ee001 42196 eel11111 42232 fnchoice 42461 fiiuncl 42502 mullimc 43047 islptre 43050 mullimcf 43054 addlimc 43079 stoweidlem20 43451 stoweidlem59 43490 perfectALTVlem2 45062 |
Copyright terms: Public domain | W3C validator |