Proof of Theorem luklem4
| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | luk-2 1656 | . . . 4
⊢ ((¬
((¬ 𝜑 → 𝜑) → 𝜑) → ((¬ 𝜑 → 𝜑) → 𝜑)) → ((¬ 𝜑 → 𝜑) → 𝜑)) | 
| 2 |  | luk-2 1656 | . . . . 5
⊢ ((¬
𝜑 → 𝜑) → 𝜑) | 
| 3 |  | luklem3 1660 | . . . . 5
⊢ (((¬
𝜑 → 𝜑) → 𝜑) → (((¬ ((¬ 𝜑 → 𝜑) → 𝜑) → ((¬ 𝜑 → 𝜑) → 𝜑)) → ((¬ 𝜑 → 𝜑) → 𝜑)) → (¬ 𝜓 → ((¬ 𝜑 → 𝜑) → 𝜑)))) | 
| 4 | 2, 3 | ax-mp 5 | . . . 4
⊢ (((¬
((¬ 𝜑 → 𝜑) → 𝜑) → ((¬ 𝜑 → 𝜑) → 𝜑)) → ((¬ 𝜑 → 𝜑) → 𝜑)) → (¬ 𝜓 → ((¬ 𝜑 → 𝜑) → 𝜑))) | 
| 5 | 1, 4 | ax-mp 5 | . . 3
⊢ (¬
𝜓 → ((¬ 𝜑 → 𝜑) → 𝜑)) | 
| 6 |  | luk-1 1655 | . . 3
⊢ ((¬
𝜓 → ((¬ 𝜑 → 𝜑) → 𝜑)) → ((((¬ 𝜑 → 𝜑) → 𝜑) → 𝜓) → (¬ 𝜓 → 𝜓))) | 
| 7 | 5, 6 | ax-mp 5 | . 2
⊢ ((((¬
𝜑 → 𝜑) → 𝜑) → 𝜓) → (¬ 𝜓 → 𝜓)) | 
| 8 |  | luk-2 1656 | . 2
⊢ ((¬
𝜓 → 𝜓) → 𝜓) | 
| 9 | 7, 8 | luklem1 1658 | 1
⊢ ((((¬
𝜑 → 𝜑) → 𝜑) → 𝜓) → 𝜓) |