Proof of Theorem luklem4
Step | Hyp | Ref
| Expression |
1 | | luk-2 1659 |
. . . 4
⊢ ((¬
((¬ 𝜑 → 𝜑) → 𝜑) → ((¬ 𝜑 → 𝜑) → 𝜑)) → ((¬ 𝜑 → 𝜑) → 𝜑)) |
2 | | luk-2 1659 |
. . . . 5
⊢ ((¬
𝜑 → 𝜑) → 𝜑) |
3 | | luklem3 1663 |
. . . . 5
⊢ (((¬
𝜑 → 𝜑) → 𝜑) → (((¬ ((¬ 𝜑 → 𝜑) → 𝜑) → ((¬ 𝜑 → 𝜑) → 𝜑)) → ((¬ 𝜑 → 𝜑) → 𝜑)) → (¬ 𝜓 → ((¬ 𝜑 → 𝜑) → 𝜑)))) |
4 | 2, 3 | ax-mp 5 |
. . . 4
⊢ (((¬
((¬ 𝜑 → 𝜑) → 𝜑) → ((¬ 𝜑 → 𝜑) → 𝜑)) → ((¬ 𝜑 → 𝜑) → 𝜑)) → (¬ 𝜓 → ((¬ 𝜑 → 𝜑) → 𝜑))) |
5 | 1, 4 | ax-mp 5 |
. . 3
⊢ (¬
𝜓 → ((¬ 𝜑 → 𝜑) → 𝜑)) |
6 | | luk-1 1658 |
. . 3
⊢ ((¬
𝜓 → ((¬ 𝜑 → 𝜑) → 𝜑)) → ((((¬ 𝜑 → 𝜑) → 𝜑) → 𝜓) → (¬ 𝜓 → 𝜓))) |
7 | 5, 6 | ax-mp 5 |
. 2
⊢ ((((¬
𝜑 → 𝜑) → 𝜑) → 𝜓) → (¬ 𝜓 → 𝜓)) |
8 | | luk-2 1659 |
. 2
⊢ ((¬
𝜓 → 𝜓) → 𝜓) |
9 | 7, 8 | luklem1 1661 |
1
⊢ ((((¬
𝜑 → 𝜑) → 𝜑) → 𝜓) → 𝜓) |