MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  luklem4 Structured version   Visualization version   GIF version

Theorem luklem4 1665
Description: Used to rederive standard propositional axioms from Lukasiewicz'. (Contributed by NM, 22-Dec-2002.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
luklem4 ((((¬ 𝜑𝜑) → 𝜑) → 𝜓) → 𝜓)

Proof of Theorem luklem4
StepHypRef Expression
1 luk-2 1660 . . . 4 ((¬ ((¬ 𝜑𝜑) → 𝜑) → ((¬ 𝜑𝜑) → 𝜑)) → ((¬ 𝜑𝜑) → 𝜑))
2 luk-2 1660 . . . . 5 ((¬ 𝜑𝜑) → 𝜑)
3 luklem3 1664 . . . . 5 (((¬ 𝜑𝜑) → 𝜑) → (((¬ ((¬ 𝜑𝜑) → 𝜑) → ((¬ 𝜑𝜑) → 𝜑)) → ((¬ 𝜑𝜑) → 𝜑)) → (¬ 𝜓 → ((¬ 𝜑𝜑) → 𝜑))))
42, 3ax-mp 5 . . . 4 (((¬ ((¬ 𝜑𝜑) → 𝜑) → ((¬ 𝜑𝜑) → 𝜑)) → ((¬ 𝜑𝜑) → 𝜑)) → (¬ 𝜓 → ((¬ 𝜑𝜑) → 𝜑)))
51, 4ax-mp 5 . . 3 𝜓 → ((¬ 𝜑𝜑) → 𝜑))
6 luk-1 1659 . . 3 ((¬ 𝜓 → ((¬ 𝜑𝜑) → 𝜑)) → ((((¬ 𝜑𝜑) → 𝜑) → 𝜓) → (¬ 𝜓𝜓)))
75, 6ax-mp 5 . 2 ((((¬ 𝜑𝜑) → 𝜑) → 𝜓) → (¬ 𝜓𝜓))
8 luk-2 1660 . 2 ((¬ 𝜓𝜓) → 𝜓)
97, 8luklem1 1662 1 ((((¬ 𝜑𝜑) → 𝜑) → 𝜓) → 𝜓)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem is referenced by:  luklem5  1666  luklem6  1667  ax3  1672
  Copyright terms: Public domain W3C validator