MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  luklem5 Structured version   Visualization version   GIF version

Theorem luklem5 1666
Description: Used to rederive standard propositional axioms from Lukasiewicz'. (Contributed by NM, 22-Dec-2002.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
luklem5 (𝜑 → (𝜓𝜑))

Proof of Theorem luklem5
StepHypRef Expression
1 luklem3 1664 . 2 (𝜑 → (((¬ 𝜑𝜑) → 𝜑) → (𝜓𝜑)))
2 luklem4 1665 . 2 ((((¬ 𝜑𝜑) → 𝜑) → (𝜓𝜑)) → (𝜓𝜑))
31, 2luklem1 1662 1 (𝜑 → (𝜓𝜑))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem is referenced by:  luklem6  1667  luklem7  1668  ax1  1670
  Copyright terms: Public domain W3C validator