MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  luklem7 Structured version   Visualization version   GIF version

Theorem luklem7 1667
Description: Used to rederive standard propositional axioms from Lukasiewicz'. (Contributed by NM, 22-Dec-2002.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
luklem7 ((𝜑 → (𝜓𝜒)) → (𝜓 → (𝜑𝜒)))

Proof of Theorem luklem7
StepHypRef Expression
1 luk-1 1658 . 2 ((𝜑 → (𝜓𝜒)) → (((𝜓𝜒) → 𝜒) → (𝜑𝜒)))
2 luklem5 1665 . . . . 5 (𝜓 → ((𝜓𝜒) → 𝜓))
3 luk-1 1658 . . . . 5 (((𝜓𝜒) → 𝜓) → ((𝜓𝜒) → ((𝜓𝜒) → 𝜒)))
42, 3luklem1 1661 . . . 4 (𝜓 → ((𝜓𝜒) → ((𝜓𝜒) → 𝜒)))
5 luklem6 1666 . . . 4 (((𝜓𝜒) → ((𝜓𝜒) → 𝜒)) → ((𝜓𝜒) → 𝜒))
64, 5luklem1 1661 . . 3 (𝜓 → ((𝜓𝜒) → 𝜒))
7 luk-1 1658 . . 3 ((𝜓 → ((𝜓𝜒) → 𝜒)) → ((((𝜓𝜒) → 𝜒) → (𝜑𝜒)) → (𝜓 → (𝜑𝜒))))
86, 7ax-mp 5 . 2 ((((𝜓𝜒) → 𝜒) → (𝜑𝜒)) → (𝜓 → (𝜑𝜒)))
91, 8luklem1 1661 1 ((𝜑 → (𝜓𝜒)) → (𝜓 → (𝜑𝜒)))
Colors of variables: wff setvar class
Syntax hints:  wi 4
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem is referenced by:  luklem8  1668  ax2  1670
  Copyright terms: Public domain W3C validator