|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > luklem7 | Structured version Visualization version GIF version | ||
| Description: Used to rederive standard propositional axioms from Lukasiewicz'. (Contributed by NM, 22-Dec-2002.) (Proof modification is discouraged.) (New usage is discouraged.) | 
| Ref | Expression | 
|---|---|
| luklem7 | ⊢ ((𝜑 → (𝜓 → 𝜒)) → (𝜓 → (𝜑 → 𝜒))) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | luk-1 1655 | . 2 ⊢ ((𝜑 → (𝜓 → 𝜒)) → (((𝜓 → 𝜒) → 𝜒) → (𝜑 → 𝜒))) | |
| 2 | luklem5 1662 | . . . . 5 ⊢ (𝜓 → ((𝜓 → 𝜒) → 𝜓)) | |
| 3 | luk-1 1655 | . . . . 5 ⊢ (((𝜓 → 𝜒) → 𝜓) → ((𝜓 → 𝜒) → ((𝜓 → 𝜒) → 𝜒))) | |
| 4 | 2, 3 | luklem1 1658 | . . . 4 ⊢ (𝜓 → ((𝜓 → 𝜒) → ((𝜓 → 𝜒) → 𝜒))) | 
| 5 | luklem6 1663 | . . . 4 ⊢ (((𝜓 → 𝜒) → ((𝜓 → 𝜒) → 𝜒)) → ((𝜓 → 𝜒) → 𝜒)) | |
| 6 | 4, 5 | luklem1 1658 | . . 3 ⊢ (𝜓 → ((𝜓 → 𝜒) → 𝜒)) | 
| 7 | luk-1 1655 | . . 3 ⊢ ((𝜓 → ((𝜓 → 𝜒) → 𝜒)) → ((((𝜓 → 𝜒) → 𝜒) → (𝜑 → 𝜒)) → (𝜓 → (𝜑 → 𝜒)))) | |
| 8 | 6, 7 | ax-mp 5 | . 2 ⊢ ((((𝜓 → 𝜒) → 𝜒) → (𝜑 → 𝜒)) → (𝜓 → (𝜑 → 𝜒))) | 
| 9 | 1, 8 | luklem1 1658 | 1 ⊢ ((𝜑 → (𝜓 → 𝜒)) → (𝜓 → (𝜑 → 𝜒))) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 | 
| This theorem is referenced by: luklem8 1665 ax2 1667 | 
| Copyright terms: Public domain | W3C validator |