Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > luklem7 | Structured version Visualization version GIF version |
Description: Used to rederive standard propositional axioms from Lukasiewicz'. (Contributed by NM, 22-Dec-2002.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
luklem7 | ⊢ ((𝜑 → (𝜓 → 𝜒)) → (𝜓 → (𝜑 → 𝜒))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | luk-1 1658 | . 2 ⊢ ((𝜑 → (𝜓 → 𝜒)) → (((𝜓 → 𝜒) → 𝜒) → (𝜑 → 𝜒))) | |
2 | luklem5 1665 | . . . . 5 ⊢ (𝜓 → ((𝜓 → 𝜒) → 𝜓)) | |
3 | luk-1 1658 | . . . . 5 ⊢ (((𝜓 → 𝜒) → 𝜓) → ((𝜓 → 𝜒) → ((𝜓 → 𝜒) → 𝜒))) | |
4 | 2, 3 | luklem1 1661 | . . . 4 ⊢ (𝜓 → ((𝜓 → 𝜒) → ((𝜓 → 𝜒) → 𝜒))) |
5 | luklem6 1666 | . . . 4 ⊢ (((𝜓 → 𝜒) → ((𝜓 → 𝜒) → 𝜒)) → ((𝜓 → 𝜒) → 𝜒)) | |
6 | 4, 5 | luklem1 1661 | . . 3 ⊢ (𝜓 → ((𝜓 → 𝜒) → 𝜒)) |
7 | luk-1 1658 | . . 3 ⊢ ((𝜓 → ((𝜓 → 𝜒) → 𝜒)) → ((((𝜓 → 𝜒) → 𝜒) → (𝜑 → 𝜒)) → (𝜓 → (𝜑 → 𝜒)))) | |
8 | 6, 7 | ax-mp 5 | . 2 ⊢ ((((𝜓 → 𝜒) → 𝜒) → (𝜑 → 𝜒)) → (𝜓 → (𝜑 → 𝜒))) |
9 | 1, 8 | luklem1 1661 | 1 ⊢ ((𝜑 → (𝜓 → 𝜒)) → (𝜓 → (𝜑 → 𝜒))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem is referenced by: luklem8 1668 ax2 1670 |
Copyright terms: Public domain | W3C validator |