MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  merlem11 Structured version   Visualization version   GIF version

Theorem merlem11 1660
Description: Step 20 of Meredith's proof of Lukasiewicz axioms from his sole axiom. (Contributed by NM, 14-Dec-2002.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
merlem11 ((𝜑 → (𝜑𝜓)) → (𝜑𝜓))

Proof of Theorem merlem11
StepHypRef Expression
1 meredith 1649 . 2 (((((𝜑𝜑) → (¬ 𝜑 → ¬ 𝜑)) → 𝜑) → 𝜑) → ((𝜑𝜑) → (𝜑𝜑)))
2 merlem10 1659 . . 3 ((𝜑 → (𝜑𝜓)) → ((𝜑 → (𝜑𝜓)) → (𝜑𝜓)))
3 merlem10 1659 . . 3 (((𝜑 → (𝜑𝜓)) → ((𝜑 → (𝜑𝜓)) → (𝜑𝜓))) → ((((((𝜑𝜑) → (¬ 𝜑 → ¬ 𝜑)) → 𝜑) → 𝜑) → ((𝜑𝜑) → (𝜑𝜑))) → ((𝜑 → (𝜑𝜓)) → (𝜑𝜓))))
42, 3ax-mp 5 . 2 ((((((𝜑𝜑) → (¬ 𝜑 → ¬ 𝜑)) → 𝜑) → 𝜑) → ((𝜑𝜑) → (𝜑𝜑))) → ((𝜑 → (𝜑𝜓)) → (𝜑𝜓)))
51, 4ax-mp 5 1 ((𝜑 → (𝜑𝜓)) → (𝜑𝜓))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem is referenced by:  merlem12  1661  merlem13  1662  luk-2  1664  luk-3  1665
  Copyright terms: Public domain W3C validator