Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > merlem11 | Structured version Visualization version GIF version |
Description: Step 20 of Meredith's proof of Lukasiewicz axioms from his sole axiom. (Contributed by NM, 14-Dec-2002.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
merlem11 | ⊢ ((𝜑 → (𝜑 → 𝜓)) → (𝜑 → 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | meredith 1649 | . 2 ⊢ (((((𝜑 → 𝜑) → (¬ 𝜑 → ¬ 𝜑)) → 𝜑) → 𝜑) → ((𝜑 → 𝜑) → (𝜑 → 𝜑))) | |
2 | merlem10 1659 | . . 3 ⊢ ((𝜑 → (𝜑 → 𝜓)) → ((𝜑 → (𝜑 → 𝜓)) → (𝜑 → 𝜓))) | |
3 | merlem10 1659 | . . 3 ⊢ (((𝜑 → (𝜑 → 𝜓)) → ((𝜑 → (𝜑 → 𝜓)) → (𝜑 → 𝜓))) → ((((((𝜑 → 𝜑) → (¬ 𝜑 → ¬ 𝜑)) → 𝜑) → 𝜑) → ((𝜑 → 𝜑) → (𝜑 → 𝜑))) → ((𝜑 → (𝜑 → 𝜓)) → (𝜑 → 𝜓)))) | |
4 | 2, 3 | ax-mp 5 | . 2 ⊢ ((((((𝜑 → 𝜑) → (¬ 𝜑 → ¬ 𝜑)) → 𝜑) → 𝜑) → ((𝜑 → 𝜑) → (𝜑 → 𝜑))) → ((𝜑 → (𝜑 → 𝜓)) → (𝜑 → 𝜓))) |
5 | 1, 4 | ax-mp 5 | 1 ⊢ ((𝜑 → (𝜑 → 𝜓)) → (𝜑 → 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem is referenced by: merlem12 1661 merlem13 1662 luk-2 1664 luk-3 1665 |
Copyright terms: Public domain | W3C validator |