Proof of Theorem merlem13
Step | Hyp | Ref
| Expression |
1 | | merlem12 1661 |
. . . . 5
⊢ (((𝜃 → (¬ ¬ 𝜒 → 𝜒)) → ¬ ((𝜃 → (¬ ¬ 𝜒 → 𝜒)) → ¬ ¬ 𝜑)) → ¬ ((𝜃 → (¬ ¬ 𝜒 → 𝜒)) → ¬ ¬ 𝜑)) |
2 | | merlem12 1661 |
. . . . . . . 8
⊢ (((𝜃 → (¬ ¬ 𝜒 → 𝜒)) → ¬ ¬ 𝜑) → ¬ ¬ 𝜑) |
3 | | merlem5 1654 |
. . . . . . . 8
⊢ ((((𝜃 → (¬ ¬ 𝜒 → 𝜒)) → ¬ ¬ 𝜑) → ¬ ¬ 𝜑) → (¬ ¬ ((𝜃 → (¬ ¬ 𝜒 → 𝜒)) → ¬ ¬ 𝜑) → ¬ ¬ 𝜑)) |
4 | 2, 3 | ax-mp 5 |
. . . . . . 7
⊢ (¬
¬ ((𝜃 → (¬ ¬
𝜒 → 𝜒)) → ¬ ¬ 𝜑) → ¬ ¬ 𝜑) |
5 | | merlem6 1655 |
. . . . . . 7
⊢ ((¬
¬ ((𝜃 → (¬ ¬
𝜒 → 𝜒)) → ¬ ¬ 𝜑) → ¬ ¬ 𝜑) → ((((¬ ((𝜃 → (¬ ¬ 𝜒 → 𝜒)) → ¬ ¬ 𝜑) → 𝜓) → (¬ ¬ ((𝜃 → (¬ ¬ 𝜒 → 𝜒)) → ¬ ¬ 𝜑) → ¬ ¬ 𝜑)) → ¬ ((𝜃 → (¬ ¬ 𝜒 → 𝜒)) → ¬ ¬ 𝜑)) → ((𝜃 → (¬ ¬ 𝜒 → 𝜒)) → ¬ ((𝜃 → (¬ ¬ 𝜒 → 𝜒)) → ¬ ¬ 𝜑)))) |
6 | 4, 5 | ax-mp 5 |
. . . . . 6
⊢ ((((¬
((𝜃 → (¬ ¬ 𝜒 → 𝜒)) → ¬ ¬ 𝜑) → 𝜓) → (¬ ¬ ((𝜃 → (¬ ¬ 𝜒 → 𝜒)) → ¬ ¬ 𝜑) → ¬ ¬ 𝜑)) → ¬ ((𝜃 → (¬ ¬ 𝜒 → 𝜒)) → ¬ ¬ 𝜑)) → ((𝜃 → (¬ ¬ 𝜒 → 𝜒)) → ¬ ((𝜃 → (¬ ¬ 𝜒 → 𝜒)) → ¬ ¬ 𝜑))) |
7 | | meredith 1649 |
. . . . . 6
⊢
(((((¬ ((𝜃 →
(¬ ¬ 𝜒 → 𝜒)) → ¬ ¬ 𝜑) → 𝜓) → (¬ ¬ ((𝜃 → (¬ ¬ 𝜒 → 𝜒)) → ¬ ¬ 𝜑) → ¬ ¬ 𝜑)) → ¬ ((𝜃 → (¬ ¬ 𝜒 → 𝜒)) → ¬ ¬ 𝜑)) → ((𝜃 → (¬ ¬ 𝜒 → 𝜒)) → ¬ ((𝜃 → (¬ ¬ 𝜒 → 𝜒)) → ¬ ¬ 𝜑))) → ((((𝜃 → (¬ ¬ 𝜒 → 𝜒)) → ¬ ((𝜃 → (¬ ¬ 𝜒 → 𝜒)) → ¬ ¬ 𝜑)) → ¬ ((𝜃 → (¬ ¬ 𝜒 → 𝜒)) → ¬ ¬ 𝜑)) → (¬ 𝜑 → ¬ ((𝜃 → (¬ ¬ 𝜒 → 𝜒)) → ¬ ¬ 𝜑)))) |
8 | 6, 7 | ax-mp 5 |
. . . . 5
⊢ ((((𝜃 → (¬ ¬ 𝜒 → 𝜒)) → ¬ ((𝜃 → (¬ ¬ 𝜒 → 𝜒)) → ¬ ¬ 𝜑)) → ¬ ((𝜃 → (¬ ¬ 𝜒 → 𝜒)) → ¬ ¬ 𝜑)) → (¬ 𝜑 → ¬ ((𝜃 → (¬ ¬ 𝜒 → 𝜒)) → ¬ ¬ 𝜑))) |
9 | 1, 8 | ax-mp 5 |
. . . 4
⊢ (¬
𝜑 → ¬ ((𝜃 → (¬ ¬ 𝜒 → 𝜒)) → ¬ ¬ 𝜑)) |
10 | | merlem6 1655 |
. . . 4
⊢ ((¬
𝜑 → ¬ ((𝜃 → (¬ ¬ 𝜒 → 𝜒)) → ¬ ¬ 𝜑)) → ((((𝜓 → 𝜓) → (¬ 𝜑 → ¬ ((𝜃 → (¬ ¬ 𝜒 → 𝜒)) → ¬ ¬ 𝜑))) → 𝜑) → ((((𝜓 → 𝜓) → (¬ 𝜑 → ¬ ((𝜃 → (¬ ¬ 𝜒 → 𝜒)) → ¬ ¬ 𝜑))) → 𝜑) → 𝜑))) |
11 | 9, 10 | ax-mp 5 |
. . 3
⊢ ((((𝜓 → 𝜓) → (¬ 𝜑 → ¬ ((𝜃 → (¬ ¬ 𝜒 → 𝜒)) → ¬ ¬ 𝜑))) → 𝜑) → ((((𝜓 → 𝜓) → (¬ 𝜑 → ¬ ((𝜃 → (¬ ¬ 𝜒 → 𝜒)) → ¬ ¬ 𝜑))) → 𝜑) → 𝜑)) |
12 | | merlem11 1660 |
. . 3
⊢
(((((𝜓 → 𝜓) → (¬ 𝜑 → ¬ ((𝜃 → (¬ ¬ 𝜒 → 𝜒)) → ¬ ¬ 𝜑))) → 𝜑) → ((((𝜓 → 𝜓) → (¬ 𝜑 → ¬ ((𝜃 → (¬ ¬ 𝜒 → 𝜒)) → ¬ ¬ 𝜑))) → 𝜑) → 𝜑)) → ((((𝜓 → 𝜓) → (¬ 𝜑 → ¬ ((𝜃 → (¬ ¬ 𝜒 → 𝜒)) → ¬ ¬ 𝜑))) → 𝜑) → 𝜑)) |
13 | 11, 12 | ax-mp 5 |
. 2
⊢ ((((𝜓 → 𝜓) → (¬ 𝜑 → ¬ ((𝜃 → (¬ ¬ 𝜒 → 𝜒)) → ¬ ¬ 𝜑))) → 𝜑) → 𝜑) |
14 | | meredith 1649 |
. 2
⊢
(((((𝜓 → 𝜓) → (¬ 𝜑 → ¬ ((𝜃 → (¬ ¬ 𝜒 → 𝜒)) → ¬ ¬ 𝜑))) → 𝜑) → 𝜑) → ((𝜑 → 𝜓) → (((𝜃 → (¬ ¬ 𝜒 → 𝜒)) → ¬ ¬ 𝜑) → 𝜓))) |
15 | 13, 14 | ax-mp 5 |
1
⊢ ((𝜑 → 𝜓) → (((𝜃 → (¬ ¬ 𝜒 → 𝜒)) → ¬ ¬ 𝜑) → 𝜓)) |