Proof of Theorem merlem13
| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | merlem12 1653 | . . . . 5
⊢ (((𝜃 → (¬ ¬ 𝜒 → 𝜒)) → ¬ ((𝜃 → (¬ ¬ 𝜒 → 𝜒)) → ¬ ¬ 𝜑)) → ¬ ((𝜃 → (¬ ¬ 𝜒 → 𝜒)) → ¬ ¬ 𝜑)) | 
| 2 |  | merlem12 1653 | . . . . . . . 8
⊢ (((𝜃 → (¬ ¬ 𝜒 → 𝜒)) → ¬ ¬ 𝜑) → ¬ ¬ 𝜑) | 
| 3 |  | merlem5 1646 | . . . . . . . 8
⊢ ((((𝜃 → (¬ ¬ 𝜒 → 𝜒)) → ¬ ¬ 𝜑) → ¬ ¬ 𝜑) → (¬ ¬ ((𝜃 → (¬ ¬ 𝜒 → 𝜒)) → ¬ ¬ 𝜑) → ¬ ¬ 𝜑)) | 
| 4 | 2, 3 | ax-mp 5 | . . . . . . 7
⊢ (¬
¬ ((𝜃 → (¬ ¬
𝜒 → 𝜒)) → ¬ ¬ 𝜑) → ¬ ¬ 𝜑) | 
| 5 |  | merlem6 1647 | . . . . . . 7
⊢ ((¬
¬ ((𝜃 → (¬ ¬
𝜒 → 𝜒)) → ¬ ¬ 𝜑) → ¬ ¬ 𝜑) → ((((¬ ((𝜃 → (¬ ¬ 𝜒 → 𝜒)) → ¬ ¬ 𝜑) → 𝜓) → (¬ ¬ ((𝜃 → (¬ ¬ 𝜒 → 𝜒)) → ¬ ¬ 𝜑) → ¬ ¬ 𝜑)) → ¬ ((𝜃 → (¬ ¬ 𝜒 → 𝜒)) → ¬ ¬ 𝜑)) → ((𝜃 → (¬ ¬ 𝜒 → 𝜒)) → ¬ ((𝜃 → (¬ ¬ 𝜒 → 𝜒)) → ¬ ¬ 𝜑)))) | 
| 6 | 4, 5 | ax-mp 5 | . . . . . 6
⊢ ((((¬
((𝜃 → (¬ ¬ 𝜒 → 𝜒)) → ¬ ¬ 𝜑) → 𝜓) → (¬ ¬ ((𝜃 → (¬ ¬ 𝜒 → 𝜒)) → ¬ ¬ 𝜑) → ¬ ¬ 𝜑)) → ¬ ((𝜃 → (¬ ¬ 𝜒 → 𝜒)) → ¬ ¬ 𝜑)) → ((𝜃 → (¬ ¬ 𝜒 → 𝜒)) → ¬ ((𝜃 → (¬ ¬ 𝜒 → 𝜒)) → ¬ ¬ 𝜑))) | 
| 7 |  | meredith 1641 | . . . . . 6
⊢
(((((¬ ((𝜃 →
(¬ ¬ 𝜒 → 𝜒)) → ¬ ¬ 𝜑) → 𝜓) → (¬ ¬ ((𝜃 → (¬ ¬ 𝜒 → 𝜒)) → ¬ ¬ 𝜑) → ¬ ¬ 𝜑)) → ¬ ((𝜃 → (¬ ¬ 𝜒 → 𝜒)) → ¬ ¬ 𝜑)) → ((𝜃 → (¬ ¬ 𝜒 → 𝜒)) → ¬ ((𝜃 → (¬ ¬ 𝜒 → 𝜒)) → ¬ ¬ 𝜑))) → ((((𝜃 → (¬ ¬ 𝜒 → 𝜒)) → ¬ ((𝜃 → (¬ ¬ 𝜒 → 𝜒)) → ¬ ¬ 𝜑)) → ¬ ((𝜃 → (¬ ¬ 𝜒 → 𝜒)) → ¬ ¬ 𝜑)) → (¬ 𝜑 → ¬ ((𝜃 → (¬ ¬ 𝜒 → 𝜒)) → ¬ ¬ 𝜑)))) | 
| 8 | 6, 7 | ax-mp 5 | . . . . 5
⊢ ((((𝜃 → (¬ ¬ 𝜒 → 𝜒)) → ¬ ((𝜃 → (¬ ¬ 𝜒 → 𝜒)) → ¬ ¬ 𝜑)) → ¬ ((𝜃 → (¬ ¬ 𝜒 → 𝜒)) → ¬ ¬ 𝜑)) → (¬ 𝜑 → ¬ ((𝜃 → (¬ ¬ 𝜒 → 𝜒)) → ¬ ¬ 𝜑))) | 
| 9 | 1, 8 | ax-mp 5 | . . . 4
⊢ (¬
𝜑 → ¬ ((𝜃 → (¬ ¬ 𝜒 → 𝜒)) → ¬ ¬ 𝜑)) | 
| 10 |  | merlem6 1647 | . . . 4
⊢ ((¬
𝜑 → ¬ ((𝜃 → (¬ ¬ 𝜒 → 𝜒)) → ¬ ¬ 𝜑)) → ((((𝜓 → 𝜓) → (¬ 𝜑 → ¬ ((𝜃 → (¬ ¬ 𝜒 → 𝜒)) → ¬ ¬ 𝜑))) → 𝜑) → ((((𝜓 → 𝜓) → (¬ 𝜑 → ¬ ((𝜃 → (¬ ¬ 𝜒 → 𝜒)) → ¬ ¬ 𝜑))) → 𝜑) → 𝜑))) | 
| 11 | 9, 10 | ax-mp 5 | . . 3
⊢ ((((𝜓 → 𝜓) → (¬ 𝜑 → ¬ ((𝜃 → (¬ ¬ 𝜒 → 𝜒)) → ¬ ¬ 𝜑))) → 𝜑) → ((((𝜓 → 𝜓) → (¬ 𝜑 → ¬ ((𝜃 → (¬ ¬ 𝜒 → 𝜒)) → ¬ ¬ 𝜑))) → 𝜑) → 𝜑)) | 
| 12 |  | merlem11 1652 | . . 3
⊢
(((((𝜓 → 𝜓) → (¬ 𝜑 → ¬ ((𝜃 → (¬ ¬ 𝜒 → 𝜒)) → ¬ ¬ 𝜑))) → 𝜑) → ((((𝜓 → 𝜓) → (¬ 𝜑 → ¬ ((𝜃 → (¬ ¬ 𝜒 → 𝜒)) → ¬ ¬ 𝜑))) → 𝜑) → 𝜑)) → ((((𝜓 → 𝜓) → (¬ 𝜑 → ¬ ((𝜃 → (¬ ¬ 𝜒 → 𝜒)) → ¬ ¬ 𝜑))) → 𝜑) → 𝜑)) | 
| 13 | 11, 12 | ax-mp 5 | . 2
⊢ ((((𝜓 → 𝜓) → (¬ 𝜑 → ¬ ((𝜃 → (¬ ¬ 𝜒 → 𝜒)) → ¬ ¬ 𝜑))) → 𝜑) → 𝜑) | 
| 14 |  | meredith 1641 | . 2
⊢
(((((𝜓 → 𝜓) → (¬ 𝜑 → ¬ ((𝜃 → (¬ ¬ 𝜒 → 𝜒)) → ¬ ¬ 𝜑))) → 𝜑) → 𝜑) → ((𝜑 → 𝜓) → (((𝜃 → (¬ ¬ 𝜒 → 𝜒)) → ¬ ¬ 𝜑) → 𝜓))) | 
| 15 | 13, 14 | ax-mp 5 | 1
⊢ ((𝜑 → 𝜓) → (((𝜃 → (¬ ¬ 𝜒 → 𝜒)) → ¬ ¬ 𝜑) → 𝜓)) |