Proof of Theorem merlem9
Step | Hyp | Ref
| Expression |
1 | | merlem6 1655 |
. . . 4
⊢ ((𝜃 → (𝜓 → 𝜏)) → (((𝜒 → (𝜃 → (𝜓 → 𝜏))) → ¬ 𝜂) → (¬ 𝜓 → ¬ 𝜂))) |
2 | | merlem8 1657 |
. . . 4
⊢ (((𝜃 → (𝜓 → 𝜏)) → (((𝜒 → (𝜃 → (𝜓 → 𝜏))) → ¬ 𝜂) → (¬ 𝜓 → ¬ 𝜂))) → ((((𝜓 → 𝜏) → (¬ (¬ (((𝜒 → (𝜃 → (𝜓 → 𝜏))) → ¬ 𝜂) → (¬ 𝜓 → ¬ 𝜂)) → ¬ 𝜃) → ¬ 𝜑)) → (¬ (((𝜒 → (𝜃 → (𝜓 → 𝜏))) → ¬ 𝜂) → (¬ 𝜓 → ¬ 𝜂)) → ¬ 𝜃)) → (((𝜒 → (𝜃 → (𝜓 → 𝜏))) → ¬ 𝜂) → (¬ 𝜓 → ¬ 𝜂)))) |
3 | 1, 2 | ax-mp 5 |
. . 3
⊢ ((((𝜓 → 𝜏) → (¬ (¬ (((𝜒 → (𝜃 → (𝜓 → 𝜏))) → ¬ 𝜂) → (¬ 𝜓 → ¬ 𝜂)) → ¬ 𝜃) → ¬ 𝜑)) → (¬ (((𝜒 → (𝜃 → (𝜓 → 𝜏))) → ¬ 𝜂) → (¬ 𝜓 → ¬ 𝜂)) → ¬ 𝜃)) → (((𝜒 → (𝜃 → (𝜓 → 𝜏))) → ¬ 𝜂) → (¬ 𝜓 → ¬ 𝜂))) |
4 | | meredith 1649 |
. . 3
⊢
(((((𝜓 → 𝜏) → (¬ (¬ (((𝜒 → (𝜃 → (𝜓 → 𝜏))) → ¬ 𝜂) → (¬ 𝜓 → ¬ 𝜂)) → ¬ 𝜃) → ¬ 𝜑)) → (¬ (((𝜒 → (𝜃 → (𝜓 → 𝜏))) → ¬ 𝜂) → (¬ 𝜓 → ¬ 𝜂)) → ¬ 𝜃)) → (((𝜒 → (𝜃 → (𝜓 → 𝜏))) → ¬ 𝜂) → (¬ 𝜓 → ¬ 𝜂))) → (((((𝜒 → (𝜃 → (𝜓 → 𝜏))) → ¬ 𝜂) → (¬ 𝜓 → ¬ 𝜂)) → 𝜓) → (𝜑 → 𝜓))) |
5 | 3, 4 | ax-mp 5 |
. 2
⊢
(((((𝜒 → (𝜃 → (𝜓 → 𝜏))) → ¬ 𝜂) → (¬ 𝜓 → ¬ 𝜂)) → 𝜓) → (𝜑 → 𝜓)) |
6 | | meredith 1649 |
. 2
⊢
((((((𝜒 → (𝜃 → (𝜓 → 𝜏))) → ¬ 𝜂) → (¬ 𝜓 → ¬ 𝜂)) → 𝜓) → (𝜑 → 𝜓)) → (((𝜑 → 𝜓) → (𝜒 → (𝜃 → (𝜓 → 𝜏)))) → (𝜂 → (𝜒 → (𝜃 → (𝜓 → 𝜏)))))) |
7 | 5, 6 | ax-mp 5 |
1
⊢ (((𝜑 → 𝜓) → (𝜒 → (𝜃 → (𝜓 → 𝜏)))) → (𝜂 → (𝜒 → (𝜃 → (𝜓 → 𝜏))))) |