Proof of Theorem merlem9
| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | merlem6 1646 | . . . 4
⊢ ((𝜃 → (𝜓 → 𝜏)) → (((𝜒 → (𝜃 → (𝜓 → 𝜏))) → ¬ 𝜂) → (¬ 𝜓 → ¬ 𝜂))) | 
| 2 |  | merlem8 1648 | . . . 4
⊢ (((𝜃 → (𝜓 → 𝜏)) → (((𝜒 → (𝜃 → (𝜓 → 𝜏))) → ¬ 𝜂) → (¬ 𝜓 → ¬ 𝜂))) → ((((𝜓 → 𝜏) → (¬ (¬ (((𝜒 → (𝜃 → (𝜓 → 𝜏))) → ¬ 𝜂) → (¬ 𝜓 → ¬ 𝜂)) → ¬ 𝜃) → ¬ 𝜑)) → (¬ (((𝜒 → (𝜃 → (𝜓 → 𝜏))) → ¬ 𝜂) → (¬ 𝜓 → ¬ 𝜂)) → ¬ 𝜃)) → (((𝜒 → (𝜃 → (𝜓 → 𝜏))) → ¬ 𝜂) → (¬ 𝜓 → ¬ 𝜂)))) | 
| 3 | 1, 2 | ax-mp 5 | . . 3
⊢ ((((𝜓 → 𝜏) → (¬ (¬ (((𝜒 → (𝜃 → (𝜓 → 𝜏))) → ¬ 𝜂) → (¬ 𝜓 → ¬ 𝜂)) → ¬ 𝜃) → ¬ 𝜑)) → (¬ (((𝜒 → (𝜃 → (𝜓 → 𝜏))) → ¬ 𝜂) → (¬ 𝜓 → ¬ 𝜂)) → ¬ 𝜃)) → (((𝜒 → (𝜃 → (𝜓 → 𝜏))) → ¬ 𝜂) → (¬ 𝜓 → ¬ 𝜂))) | 
| 4 |  | meredith 1640 | . . 3
⊢
(((((𝜓 → 𝜏) → (¬ (¬ (((𝜒 → (𝜃 → (𝜓 → 𝜏))) → ¬ 𝜂) → (¬ 𝜓 → ¬ 𝜂)) → ¬ 𝜃) → ¬ 𝜑)) → (¬ (((𝜒 → (𝜃 → (𝜓 → 𝜏))) → ¬ 𝜂) → (¬ 𝜓 → ¬ 𝜂)) → ¬ 𝜃)) → (((𝜒 → (𝜃 → (𝜓 → 𝜏))) → ¬ 𝜂) → (¬ 𝜓 → ¬ 𝜂))) → (((((𝜒 → (𝜃 → (𝜓 → 𝜏))) → ¬ 𝜂) → (¬ 𝜓 → ¬ 𝜂)) → 𝜓) → (𝜑 → 𝜓))) | 
| 5 | 3, 4 | ax-mp 5 | . 2
⊢
(((((𝜒 → (𝜃 → (𝜓 → 𝜏))) → ¬ 𝜂) → (¬ 𝜓 → ¬ 𝜂)) → 𝜓) → (𝜑 → 𝜓)) | 
| 6 |  | meredith 1640 | . 2
⊢
((((((𝜒 → (𝜃 → (𝜓 → 𝜏))) → ¬ 𝜂) → (¬ 𝜓 → ¬ 𝜂)) → 𝜓) → (𝜑 → 𝜓)) → (((𝜑 → 𝜓) → (𝜒 → (𝜃 → (𝜓 → 𝜏)))) → (𝜂 → (𝜒 → (𝜃 → (𝜓 → 𝜏)))))) | 
| 7 | 5, 6 | ax-mp 5 | 1
⊢ (((𝜑 → 𝜓) → (𝜒 → (𝜃 → (𝜓 → 𝜏)))) → (𝜂 → (𝜒 → (𝜃 → (𝜓 → 𝜏))))) |