MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pm2.86 Structured version   Visualization version   GIF version

Theorem pm2.86 109
Description: Converse of axiom ax-2 7. Theorem *2.86 of [WhiteheadRussell] p. 108. (Contributed by NM, 25-Apr-1994.) (Proof shortened by Wolf Lammen, 3-Apr-2013.)
Assertion
Ref Expression
pm2.86 (((𝜑𝜓) → (𝜑𝜒)) → (𝜑 → (𝜓𝜒)))

Proof of Theorem pm2.86
StepHypRef Expression
1 id 22 . 2 (((𝜑𝜓) → (𝜑𝜒)) → ((𝜑𝜓) → (𝜑𝜒)))
21pm2.86d 108 1 (((𝜑𝜓) → (𝜑𝜒)) → (𝜑 → (𝜓𝜒)))
Colors of variables: wff setvar class
Syntax hints:  wi 4
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7
This theorem is referenced by:  imdi  391
  Copyright terms: Public domain W3C validator