MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pm2.86d Structured version   Visualization version   GIF version

Theorem pm2.86d 108
Description: Deduction associated with pm2.86 109. (Contributed by NM, 29-Jun-1995.) (Proof shortened by Wolf Lammen, 3-Apr-2013.)
Hypothesis
Ref Expression
pm2.86d.1 (𝜑 → ((𝜓𝜒) → (𝜓𝜃)))
Assertion
Ref Expression
pm2.86d (𝜑 → (𝜓 → (𝜒𝜃)))

Proof of Theorem pm2.86d
StepHypRef Expression
1 ax-1 6 . . 3 (𝜒 → (𝜓𝜒))
2 pm2.86d.1 . . 3 (𝜑 → ((𝜓𝜒) → (𝜓𝜃)))
31, 2syl5 34 . 2 (𝜑 → (𝜒 → (𝜓𝜃)))
43com23 86 1 (𝜑 → (𝜓 → (𝜒𝜃)))
Colors of variables: wff setvar class
Syntax hints:  wi 4
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7
This theorem is referenced by:  pm2.86  109  pm5.74  270  axc14  2461  spc3egv  3547
  Copyright terms: Public domain W3C validator