Proof of Theorem re1ax2
| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | re1ax2lem 36389 | . 2
⊢ ((𝜑 → (𝜓 → 𝜒)) → (𝜓 → (𝜑 → 𝜒))) | 
| 2 |  | tb-ax1 36385 | . . . 4
⊢ ((𝜑 → (𝜑 → 𝜒)) → (((𝜑 → 𝜒) → 𝜒) → (𝜑 → 𝜒))) | 
| 3 |  | tb-ax3 36387 | . . . 4
⊢ ((((𝜑 → 𝜒) → 𝜒) → (𝜑 → 𝜒)) → (𝜑 → 𝜒)) | 
| 4 | 2, 3 | tbsyl 36388 | . . 3
⊢ ((𝜑 → (𝜑 → 𝜒)) → (𝜑 → 𝜒)) | 
| 5 |  | tb-ax1 36385 | . . . 4
⊢ ((𝜑 → 𝜓) → ((𝜓 → (𝜑 → 𝜒)) → (𝜑 → (𝜑 → 𝜒)))) | 
| 6 |  | re1ax2lem 36389 | . . . 4
⊢ (((𝜑 → 𝜓) → ((𝜓 → (𝜑 → 𝜒)) → (𝜑 → (𝜑 → 𝜒)))) → ((𝜓 → (𝜑 → 𝜒)) → ((𝜑 → 𝜓) → (𝜑 → (𝜑 → 𝜒))))) | 
| 7 | 5, 6 | ax-mp 5 | . . 3
⊢ ((𝜓 → (𝜑 → 𝜒)) → ((𝜑 → 𝜓) → (𝜑 → (𝜑 → 𝜒)))) | 
| 8 |  | tb-ax1 36385 | . . . 4
⊢ (((𝜑 → 𝜓) → (𝜑 → (𝜑 → 𝜒))) → (((𝜑 → (𝜑 → 𝜒)) → (𝜑 → 𝜒)) → ((𝜑 → 𝜓) → (𝜑 → 𝜒)))) | 
| 9 |  | re1ax2lem 36389 | . . . 4
⊢ ((((𝜑 → 𝜓) → (𝜑 → (𝜑 → 𝜒))) → (((𝜑 → (𝜑 → 𝜒)) → (𝜑 → 𝜒)) → ((𝜑 → 𝜓) → (𝜑 → 𝜒)))) → (((𝜑 → (𝜑 → 𝜒)) → (𝜑 → 𝜒)) → (((𝜑 → 𝜓) → (𝜑 → (𝜑 → 𝜒))) → ((𝜑 → 𝜓) → (𝜑 → 𝜒))))) | 
| 10 | 8, 9 | ax-mp 5 | . . 3
⊢ (((𝜑 → (𝜑 → 𝜒)) → (𝜑 → 𝜒)) → (((𝜑 → 𝜓) → (𝜑 → (𝜑 → 𝜒))) → ((𝜑 → 𝜓) → (𝜑 → 𝜒)))) | 
| 11 | 4, 7, 10 | mpsyl 68 | . 2
⊢ ((𝜓 → (𝜑 → 𝜒)) → ((𝜑 → 𝜓) → (𝜑 → 𝜒))) | 
| 12 | 1, 11 | tbsyl 36388 | 1
⊢ ((𝜑 → (𝜓 → 𝜒)) → ((𝜑 → 𝜓) → (𝜑 → 𝜒))) |