Proof of Theorem re1ax2
Step | Hyp | Ref
| Expression |
1 | | re1ax2lem 34503 |
. 2
⊢ ((𝜑 → (𝜓 → 𝜒)) → (𝜓 → (𝜑 → 𝜒))) |
2 | | tb-ax1 34499 |
. . . 4
⊢ ((𝜑 → (𝜑 → 𝜒)) → (((𝜑 → 𝜒) → 𝜒) → (𝜑 → 𝜒))) |
3 | | tb-ax3 34501 |
. . . 4
⊢ ((((𝜑 → 𝜒) → 𝜒) → (𝜑 → 𝜒)) → (𝜑 → 𝜒)) |
4 | 2, 3 | tbsyl 34502 |
. . 3
⊢ ((𝜑 → (𝜑 → 𝜒)) → (𝜑 → 𝜒)) |
5 | | tb-ax1 34499 |
. . . 4
⊢ ((𝜑 → 𝜓) → ((𝜓 → (𝜑 → 𝜒)) → (𝜑 → (𝜑 → 𝜒)))) |
6 | | re1ax2lem 34503 |
. . . 4
⊢ (((𝜑 → 𝜓) → ((𝜓 → (𝜑 → 𝜒)) → (𝜑 → (𝜑 → 𝜒)))) → ((𝜓 → (𝜑 → 𝜒)) → ((𝜑 → 𝜓) → (𝜑 → (𝜑 → 𝜒))))) |
7 | 5, 6 | ax-mp 5 |
. . 3
⊢ ((𝜓 → (𝜑 → 𝜒)) → ((𝜑 → 𝜓) → (𝜑 → (𝜑 → 𝜒)))) |
8 | | tb-ax1 34499 |
. . . 4
⊢ (((𝜑 → 𝜓) → (𝜑 → (𝜑 → 𝜒))) → (((𝜑 → (𝜑 → 𝜒)) → (𝜑 → 𝜒)) → ((𝜑 → 𝜓) → (𝜑 → 𝜒)))) |
9 | | re1ax2lem 34503 |
. . . 4
⊢ ((((𝜑 → 𝜓) → (𝜑 → (𝜑 → 𝜒))) → (((𝜑 → (𝜑 → 𝜒)) → (𝜑 → 𝜒)) → ((𝜑 → 𝜓) → (𝜑 → 𝜒)))) → (((𝜑 → (𝜑 → 𝜒)) → (𝜑 → 𝜒)) → (((𝜑 → 𝜓) → (𝜑 → (𝜑 → 𝜒))) → ((𝜑 → 𝜓) → (𝜑 → 𝜒))))) |
10 | 8, 9 | ax-mp 5 |
. . 3
⊢ (((𝜑 → (𝜑 → 𝜒)) → (𝜑 → 𝜒)) → (((𝜑 → 𝜓) → (𝜑 → (𝜑 → 𝜒))) → ((𝜑 → 𝜓) → (𝜑 → 𝜒)))) |
11 | 4, 7, 10 | mpsyl 68 |
. 2
⊢ ((𝜓 → (𝜑 → 𝜒)) → ((𝜑 → 𝜓) → (𝜑 → 𝜒))) |
12 | 1, 11 | tbsyl 34502 |
1
⊢ ((𝜑 → (𝜓 → 𝜒)) → ((𝜑 → 𝜓) → (𝜑 → 𝜒))) |