Proof of Theorem re1ax2
| Step | Hyp | Ref
| Expression |
| 1 | | re1ax2lem 36410 |
. 2
⊢ ((𝜑 → (𝜓 → 𝜒)) → (𝜓 → (𝜑 → 𝜒))) |
| 2 | | tb-ax1 36406 |
. . . 4
⊢ ((𝜑 → (𝜑 → 𝜒)) → (((𝜑 → 𝜒) → 𝜒) → (𝜑 → 𝜒))) |
| 3 | | tb-ax3 36408 |
. . . 4
⊢ ((((𝜑 → 𝜒) → 𝜒) → (𝜑 → 𝜒)) → (𝜑 → 𝜒)) |
| 4 | 2, 3 | tbsyl 36409 |
. . 3
⊢ ((𝜑 → (𝜑 → 𝜒)) → (𝜑 → 𝜒)) |
| 5 | | tb-ax1 36406 |
. . . 4
⊢ ((𝜑 → 𝜓) → ((𝜓 → (𝜑 → 𝜒)) → (𝜑 → (𝜑 → 𝜒)))) |
| 6 | | re1ax2lem 36410 |
. . . 4
⊢ (((𝜑 → 𝜓) → ((𝜓 → (𝜑 → 𝜒)) → (𝜑 → (𝜑 → 𝜒)))) → ((𝜓 → (𝜑 → 𝜒)) → ((𝜑 → 𝜓) → (𝜑 → (𝜑 → 𝜒))))) |
| 7 | 5, 6 | ax-mp 5 |
. . 3
⊢ ((𝜓 → (𝜑 → 𝜒)) → ((𝜑 → 𝜓) → (𝜑 → (𝜑 → 𝜒)))) |
| 8 | | tb-ax1 36406 |
. . . 4
⊢ (((𝜑 → 𝜓) → (𝜑 → (𝜑 → 𝜒))) → (((𝜑 → (𝜑 → 𝜒)) → (𝜑 → 𝜒)) → ((𝜑 → 𝜓) → (𝜑 → 𝜒)))) |
| 9 | | re1ax2lem 36410 |
. . . 4
⊢ ((((𝜑 → 𝜓) → (𝜑 → (𝜑 → 𝜒))) → (((𝜑 → (𝜑 → 𝜒)) → (𝜑 → 𝜒)) → ((𝜑 → 𝜓) → (𝜑 → 𝜒)))) → (((𝜑 → (𝜑 → 𝜒)) → (𝜑 → 𝜒)) → (((𝜑 → 𝜓) → (𝜑 → (𝜑 → 𝜒))) → ((𝜑 → 𝜓) → (𝜑 → 𝜒))))) |
| 10 | 8, 9 | ax-mp 5 |
. . 3
⊢ (((𝜑 → (𝜑 → 𝜒)) → (𝜑 → 𝜒)) → (((𝜑 → 𝜓) → (𝜑 → (𝜑 → 𝜒))) → ((𝜑 → 𝜓) → (𝜑 → 𝜒)))) |
| 11 | 4, 7, 10 | mpsyl 68 |
. 2
⊢ ((𝜓 → (𝜑 → 𝜒)) → ((𝜑 → 𝜓) → (𝜑 → 𝜒))) |
| 12 | 1, 11 | tbsyl 36409 |
1
⊢ ((𝜑 → (𝜓 → 𝜒)) → ((𝜑 → 𝜓) → (𝜑 → 𝜒))) |