Mathbox for Anthony Hart |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > tbsyl | Structured version Visualization version GIF version |
Description: The weak syllogism from Tarski-Bernays'. (Contributed by Anthony Hart, 16-Aug-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
tbsyl.1 | ⊢ (𝜑 → 𝜓) |
tbsyl.2 | ⊢ (𝜓 → 𝜒) |
Ref | Expression |
---|---|
tbsyl | ⊢ (𝜑 → 𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tbsyl.2 | . 2 ⊢ (𝜓 → 𝜒) | |
2 | tbsyl.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
3 | tb-ax1 34499 | . . 3 ⊢ ((𝜑 → 𝜓) → ((𝜓 → 𝜒) → (𝜑 → 𝜒))) | |
4 | 2, 3 | ax-mp 5 | . 2 ⊢ ((𝜓 → 𝜒) → (𝜑 → 𝜒)) |
5 | 1, 4 | ax-mp 5 | 1 ⊢ (𝜑 → 𝜒) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
This theorem is referenced by: re1ax2lem 34503 re1ax2 34504 |
Copyright terms: Public domain | W3C validator |