![]() |
Metamath
Proof Explorer Theorem List (p. 359 of 491) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | ![]() (1-30946) |
![]() (30947-32469) |
![]() (32470-49035) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | wlimeq1 35801 | Equality theorem for the limit class. (Contributed by Scott Fenton, 15-Jun-2018.) |
⊢ (𝑅 = 𝑆 → WLim(𝑅, 𝐴) = WLim(𝑆, 𝐴)) | ||
Theorem | wlimeq2 35802 | Equality theorem for the limit class. (Contributed by Scott Fenton, 15-Jun-2018.) |
⊢ (𝐴 = 𝐵 → WLim(𝑅, 𝐴) = WLim(𝑅, 𝐵)) | ||
Theorem | nfwlim 35803 | Bound-variable hypothesis builder for the limit class. (Contributed by Scott Fenton, 15-Jun-2018.) (Proof shortened by AV, 10-Oct-2021.) |
⊢ Ⅎ𝑥𝑅 & ⊢ Ⅎ𝑥𝐴 ⇒ ⊢ Ⅎ𝑥WLim(𝑅, 𝐴) | ||
Theorem | elwlim 35804 | Membership in the limit class. (Contributed by Scott Fenton, 15-Jun-2018.) (Revised by AV, 10-Oct-2021.) |
⊢ (𝑋 ∈ WLim(𝑅, 𝐴) ↔ (𝑋 ∈ 𝐴 ∧ 𝑋 ≠ inf(𝐴, 𝐴, 𝑅) ∧ 𝑋 = sup(Pred(𝑅, 𝐴, 𝑋), 𝐴, 𝑅))) | ||
Theorem | wzel 35805 | The zero of a well-founded set is a member of that set. (Contributed by Scott Fenton, 13-Jun-2018.) (Revised by AV, 10-Oct-2021.) |
⊢ ((𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ∧ 𝐴 ≠ ∅) → inf(𝐴, 𝐴, 𝑅) ∈ 𝐴) | ||
Theorem | wsuclem 35806* | Lemma for the supremum properties of well-founded successor. (Contributed by Scott Fenton, 15-Jun-2018.) (Revised by AV, 10-Oct-2021.) |
⊢ (𝜑 → 𝑅 We 𝐴) & ⊢ (𝜑 → 𝑅 Se 𝐴) & ⊢ (𝜑 → 𝑋 ∈ 𝑉) & ⊢ (𝜑 → ∃𝑤 ∈ 𝐴 𝑋𝑅𝑤) ⇒ ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 (∀𝑦 ∈ Pred (◡𝑅, 𝐴, 𝑋) ¬ 𝑦𝑅𝑥 ∧ ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 → ∃𝑧 ∈ Pred (◡𝑅, 𝐴, 𝑋)𝑧𝑅𝑦))) | ||
Theorem | wsucex 35807 | Existence theorem for well-founded successor. (Contributed by Scott Fenton, 16-Jun-2018.) (Proof shortened by AV, 10-Oct-2021.) |
⊢ (𝜑 → 𝑅 Or 𝐴) ⇒ ⊢ (𝜑 → wsuc(𝑅, 𝐴, 𝑋) ∈ V) | ||
Theorem | wsuccl 35808* | If 𝑋 is a set with an 𝑅 successor in 𝐴, then its well-founded successor is a member of 𝐴. (Contributed by Scott Fenton, 15-Jun-2018.) (Proof shortened by AV, 10-Oct-2021.) |
⊢ (𝜑 → 𝑅 We 𝐴) & ⊢ (𝜑 → 𝑅 Se 𝐴) & ⊢ (𝜑 → 𝑋 ∈ 𝑉) & ⊢ (𝜑 → ∃𝑦 ∈ 𝐴 𝑋𝑅𝑦) ⇒ ⊢ (𝜑 → wsuc(𝑅, 𝐴, 𝑋) ∈ 𝐴) | ||
Theorem | wsuclb 35809 | A well-founded successor is a lower bound on points after 𝑋. (Contributed by Scott Fenton, 16-Jun-2018.) (Proof shortened by AV, 10-Oct-2021.) |
⊢ (𝜑 → 𝑅 We 𝐴) & ⊢ (𝜑 → 𝑅 Se 𝐴) & ⊢ (𝜑 → 𝑋 ∈ 𝑉) & ⊢ (𝜑 → 𝑌 ∈ 𝐴) & ⊢ (𝜑 → 𝑋𝑅𝑌) ⇒ ⊢ (𝜑 → ¬ 𝑌𝑅wsuc(𝑅, 𝐴, 𝑋)) | ||
Theorem | wlimss 35810 | The class of limit points is a subclass of the base class. (Contributed by Scott Fenton, 16-Jun-2018.) |
⊢ WLim(𝑅, 𝐴) ⊆ 𝐴 | ||
Syntax | ctxp 35811 | Declare the syntax for tail Cartesian product. |
class (𝐴 ⊗ 𝐵) | ||
Syntax | cpprod 35812 | Declare the syntax for the parallel product. |
class pprod(𝑅, 𝑆) | ||
Syntax | csset 35813 | Declare the subset relationship class. |
class SSet | ||
Syntax | ctrans 35814 | Declare the transitive set class. |
class Trans | ||
Syntax | cbigcup 35815 | Declare the set union relationship. |
class Bigcup | ||
Syntax | cfix 35816 | Declare the syntax for the fixpoints of a class. |
class Fix 𝐴 | ||
Syntax | climits 35817 | Declare the class of limit ordinals. |
class Limits | ||
Syntax | cfuns 35818 | Declare the syntax for the class of all function. |
class Funs | ||
Syntax | csingle 35819 | Declare the syntax for the singleton function. |
class Singleton | ||
Syntax | csingles 35820 | Declare the syntax for the class of all singletons. |
class Singletons | ||
Syntax | cimage 35821 | Declare the syntax for the image functor. |
class Image𝐴 | ||
Syntax | ccart 35822 | Declare the syntax for the cartesian function. |
class Cart | ||
Syntax | cimg 35823 | Declare the syntax for the image function. |
class Img | ||
Syntax | cdomain 35824 | Declare the syntax for the domain function. |
class Domain | ||
Syntax | crange 35825 | Declare the syntax for the range function. |
class Range | ||
Syntax | capply 35826 | Declare the syntax for the application function. |
class Apply | ||
Syntax | ccup 35827 | Declare the syntax for the cup function. |
class Cup | ||
Syntax | ccap 35828 | Declare the syntax for the cap function. |
class Cap | ||
Syntax | csuccf 35829 | Declare the syntax for the successor function. |
class Succ | ||
Syntax | cfunpart 35830 | Declare the syntax for the functional part functor. |
class Funpart𝐹 | ||
Syntax | cfullfn 35831 | Declare the syntax for the full function functor. |
class FullFun𝐹 | ||
Syntax | crestrict 35832 | Declare the syntax for the restriction function. |
class Restrict | ||
Syntax | cub 35833 | Declare the syntax for the upper bound relationship functor. |
class UB𝑅 | ||
Syntax | clb 35834 | Declare the syntax for the lower bound relationship functor. |
class LB𝑅 | ||
Definition | df-txp 35835 | Define the tail cross of two classes. Membership in this class is defined by txpss3v 35859 and brtxp 35861. (Contributed by Scott Fenton, 31-Mar-2012.) |
⊢ (𝐴 ⊗ 𝐵) = ((◡(1st ↾ (V × V)) ∘ 𝐴) ∩ (◡(2nd ↾ (V × V)) ∘ 𝐵)) | ||
Definition | df-pprod 35836 | Define the parallel product of two classes. Membership in this class is defined by pprodss4v 35865 and brpprod 35866. (Contributed by Scott Fenton, 11-Apr-2014.) |
⊢ pprod(𝐴, 𝐵) = ((𝐴 ∘ (1st ↾ (V × V))) ⊗ (𝐵 ∘ (2nd ↾ (V × V)))) | ||
Definition | df-sset 35837 | Define the subset class. For the value, see brsset 35870. (Contributed by Scott Fenton, 31-Mar-2012.) |
⊢ SSet = ((V × V) ∖ ran ( E ⊗ (V ∖ E ))) | ||
Definition | df-trans 35838 | Define the class of all transitive sets. (Contributed by Scott Fenton, 31-Mar-2012.) |
⊢ Trans = (V ∖ ran (( E ∘ E ) ∖ E )) | ||
Definition | df-bigcup 35839 | Define the Bigcup function, which, per fvbigcup 35883, carries a set to its union. (Contributed by Scott Fenton, 11-Apr-2012.) |
⊢ Bigcup = ((V × V) ∖ ran ((V ⊗ E ) △ (( E ∘ E ) ⊗ V))) | ||
Definition | df-fix 35840 | Define the class of all fixpoints of a relationship. (Contributed by Scott Fenton, 11-Apr-2012.) |
⊢ Fix 𝐴 = dom (𝐴 ∩ I ) | ||
Definition | df-limits 35841 | Define the class of all limit ordinals. (Contributed by Scott Fenton, 11-Apr-2012.) |
⊢ Limits = ((On ∩ Fix Bigcup ) ∖ {∅}) | ||
Definition | df-funs 35842 | Define the class of all functions. See elfuns 35896 for membership. (Contributed by Scott Fenton, 18-Feb-2013.) |
⊢ Funs = (𝒫 (V × V) ∖ Fix ( E ∘ ((1st ⊗ ((V ∖ I ) ∘ 2nd )) ∘ ◡ E ))) | ||
Definition | df-singleton 35843 | Define the singleton function. See brsingle 35898 for its value. (Contributed by Scott Fenton, 4-Apr-2014.) |
⊢ Singleton = ((V × V) ∖ ran ((V ⊗ E ) △ ( I ⊗ V))) | ||
Definition | df-singles 35844 | Define the class of all singletons. See elsingles 35899 for membership. (Contributed by Scott Fenton, 19-Feb-2013.) |
⊢ Singletons = ran Singleton | ||
Definition | df-image 35845 | Define the image functor. This function takes a set 𝐴 to a function 𝑥 ↦ (𝐴 “ 𝑥), providing that the latter exists. See imageval 35911 for the derivation. (Contributed by Scott Fenton, 27-Mar-2014.) |
⊢ Image𝐴 = ((V × V) ∖ ran ((V ⊗ E ) △ (( E ∘ ◡𝐴) ⊗ V))) | ||
Definition | df-cart 35846 | Define the cartesian product function. See brcart 35913 for its value. (Contributed by Scott Fenton, 11-Apr-2014.) |
⊢ Cart = (((V × V) × V) ∖ ran ((V ⊗ E ) △ (pprod( E , E ) ⊗ V))) | ||
Definition | df-img 35847 | Define the image function. See brimg 35918 for its value. (Contributed by Scott Fenton, 12-Apr-2014.) |
⊢ Img = (Image((2nd ∘ 1st ) ↾ (1st ↾ (V × V))) ∘ Cart) | ||
Definition | df-domain 35848 | Define the domain function. See brdomain 35914 for its value. (Contributed by Scott Fenton, 11-Apr-2014.) |
⊢ Domain = Image(1st ↾ (V × V)) | ||
Definition | df-range 35849 | Define the range function. See brrange 35915 for its value. (Contributed by Scott Fenton, 11-Apr-2014.) |
⊢ Range = Image(2nd ↾ (V × V)) | ||
Definition | df-cup 35850 | Define the little cup function. See brcup 35920 for its value. (Contributed by Scott Fenton, 14-Apr-2014.) |
⊢ Cup = (((V × V) × V) ∖ ran ((V ⊗ E ) △ (((◡1st ∘ E ) ∪ (◡2nd ∘ E )) ⊗ V))) | ||
Definition | df-cap 35851 | Define the little cap function. See brcap 35921 for its value. (Contributed by Scott Fenton, 17-Apr-2014.) |
⊢ Cap = (((V × V) × V) ∖ ran ((V ⊗ E ) △ (((◡1st ∘ E ) ∩ (◡2nd ∘ E )) ⊗ V))) | ||
Definition | df-restrict 35852 | Define the restriction function. See brrestrict 35930 for its value. (Contributed by Scott Fenton, 17-Apr-2014.) |
⊢ Restrict = (Cap ∘ (1st ⊗ (Cart ∘ (2nd ⊗ (Range ∘ 1st ))))) | ||
Definition | df-succf 35853 | Define the successor function. See brsuccf 35922 for its value. (Contributed by Scott Fenton, 14-Apr-2014.) |
⊢ Succ = (Cup ∘ ( I ⊗ Singleton)) | ||
Definition | df-apply 35854 | Define the application function. See brapply 35919 for its value. (Contributed by Scott Fenton, 12-Apr-2014.) |
⊢ Apply = (( Bigcup ∘ Bigcup ) ∘ (((V × V) ∖ ran ((V ⊗ E ) △ (( E ↾ Singletons ) ⊗ V))) ∘ ((Singleton ∘ Img) ∘ pprod( I , Singleton)))) | ||
Definition | df-funpart 35855 | Define the functional part of a class 𝐹. This is the maximal part of 𝐹 that is a function. See funpartfun 35924 and funpartfv 35926 for the meaning of this statement. (Contributed by Scott Fenton, 16-Apr-2014.) |
⊢ Funpart𝐹 = (𝐹 ↾ dom ((Image𝐹 ∘ Singleton) ∩ (V × Singletons ))) | ||
Definition | df-fullfun 35856 | Define the full function over 𝐹. This is a function with domain V that always agrees with 𝐹 for its value. (Contributed by Scott Fenton, 17-Apr-2014.) |
⊢ FullFun𝐹 = (Funpart𝐹 ∪ ((V ∖ dom Funpart𝐹) × {∅})) | ||
Definition | df-ub 35857 | Define the upper bound relationship functor. See brub 35935 for value. (Contributed by Scott Fenton, 3-May-2018.) |
⊢ UB𝑅 = ((V × V) ∖ ((V ∖ 𝑅) ∘ ◡ E )) | ||
Definition | df-lb 35858 | Define the lower bound relationship functor. See brlb 35936 for value. (Contributed by Scott Fenton, 3-May-2018.) |
⊢ LB𝑅 = UB◡𝑅 | ||
Theorem | txpss3v 35859 | A tail Cartesian product is a subset of the class of ordered triples. (Contributed by Scott Fenton, 31-Mar-2012.) |
⊢ (𝐴 ⊗ 𝐵) ⊆ (V × (V × V)) | ||
Theorem | txprel 35860 | A tail Cartesian product is a relationship. (Contributed by Scott Fenton, 31-Mar-2012.) |
⊢ Rel (𝐴 ⊗ 𝐵) | ||
Theorem | brtxp 35861 | Characterize a ternary relation over a tail Cartesian product. Together with txpss3v 35859, this completely defines membership in a tail cross. (Contributed by Scott Fenton, 31-Mar-2012.) (Proof shortened by Peter Mazsa, 2-Oct-2022.) |
⊢ 𝑋 ∈ V & ⊢ 𝑌 ∈ V & ⊢ 𝑍 ∈ V ⇒ ⊢ (𝑋(𝐴 ⊗ 𝐵)〈𝑌, 𝑍〉 ↔ (𝑋𝐴𝑌 ∧ 𝑋𝐵𝑍)) | ||
Theorem | brtxp2 35862* | The binary relation over a tail cross when the second argument is not an ordered pair. (Contributed by Scott Fenton, 14-Apr-2014.) (Revised by Mario Carneiro, 3-May-2015.) |
⊢ 𝐴 ∈ V ⇒ ⊢ (𝐴(𝑅 ⊗ 𝑆)𝐵 ↔ ∃𝑥∃𝑦(𝐵 = 〈𝑥, 𝑦〉 ∧ 𝐴𝑅𝑥 ∧ 𝐴𝑆𝑦)) | ||
Theorem | dfpprod2 35863 | Expanded definition of parallel product. (Contributed by Scott Fenton, 3-May-2014.) |
⊢ pprod(𝐴, 𝐵) = ((◡(1st ↾ (V × V)) ∘ (𝐴 ∘ (1st ↾ (V × V)))) ∩ (◡(2nd ↾ (V × V)) ∘ (𝐵 ∘ (2nd ↾ (V × V))))) | ||
Theorem | pprodcnveq 35864 | A converse law for parallel product. (Contributed by Scott Fenton, 3-May-2014.) |
⊢ pprod(𝑅, 𝑆) = ◡pprod(◡𝑅, ◡𝑆) | ||
Theorem | pprodss4v 35865 | The parallel product is a subclass of ((V × V) × (V × V)). (Contributed by Scott Fenton, 11-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.) (Proof shortened by Peter Mazsa, 2-Oct-2022.) |
⊢ pprod(𝐴, 𝐵) ⊆ ((V × V) × (V × V)) | ||
Theorem | brpprod 35866 | Characterize a quaternary relation over a tail Cartesian product. Together with pprodss4v 35865, this completely defines membership in a parallel product. (Contributed by Scott Fenton, 11-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.) |
⊢ 𝑋 ∈ V & ⊢ 𝑌 ∈ V & ⊢ 𝑍 ∈ V & ⊢ 𝑊 ∈ V ⇒ ⊢ (〈𝑋, 𝑌〉pprod(𝐴, 𝐵)〈𝑍, 𝑊〉 ↔ (𝑋𝐴𝑍 ∧ 𝑌𝐵𝑊)) | ||
Theorem | brpprod3a 35867* | Condition for parallel product when the last argument is not an ordered pair. (Contributed by Scott Fenton, 11-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.) |
⊢ 𝑋 ∈ V & ⊢ 𝑌 ∈ V & ⊢ 𝑍 ∈ V ⇒ ⊢ (〈𝑋, 𝑌〉pprod(𝑅, 𝑆)𝑍 ↔ ∃𝑧∃𝑤(𝑍 = 〈𝑧, 𝑤〉 ∧ 𝑋𝑅𝑧 ∧ 𝑌𝑆𝑤)) | ||
Theorem | brpprod3b 35868* | Condition for parallel product when the first argument is not an ordered pair. (Contributed by Scott Fenton, 3-May-2014.) |
⊢ 𝑋 ∈ V & ⊢ 𝑌 ∈ V & ⊢ 𝑍 ∈ V ⇒ ⊢ (𝑋pprod(𝑅, 𝑆)〈𝑌, 𝑍〉 ↔ ∃𝑧∃𝑤(𝑋 = 〈𝑧, 𝑤〉 ∧ 𝑧𝑅𝑌 ∧ 𝑤𝑆𝑍)) | ||
Theorem | relsset 35869 | The subset class is a binary relation. (Contributed by Scott Fenton, 31-Mar-2012.) |
⊢ Rel SSet | ||
Theorem | brsset 35870 | For sets, the SSet binary relation is equivalent to the subset relationship. (Contributed by Scott Fenton, 31-Mar-2012.) |
⊢ 𝐵 ∈ V ⇒ ⊢ (𝐴 SSet 𝐵 ↔ 𝐴 ⊆ 𝐵) | ||
Theorem | idsset 35871 | I is equal to the intersection of SSet and its converse. (Contributed by Scott Fenton, 31-Mar-2012.) |
⊢ I = ( SSet ∩ ◡ SSet ) | ||
Theorem | eltrans 35872 | Membership in the class of all transitive sets. (Contributed by Scott Fenton, 31-Mar-2012.) |
⊢ 𝐴 ∈ V ⇒ ⊢ (𝐴 ∈ Trans ↔ Tr 𝐴) | ||
Theorem | dfon3 35873 | A quantifier-free definition of On. (Contributed by Scott Fenton, 5-Apr-2012.) |
⊢ On = (V ∖ ran (( SSet ∩ ( Trans × V)) ∖ ( I ∪ E ))) | ||
Theorem | dfon4 35874 | Another quantifier-free definition of On. (Contributed by Scott Fenton, 4-May-2014.) |
⊢ On = (V ∖ (( SSet ∖ ( I ∪ E )) “ Trans )) | ||
Theorem | brtxpsd 35875* | Expansion of a common form used in quantifier-free definitions. (Contributed by Scott Fenton, 17-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.) |
⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V ⇒ ⊢ (¬ 𝐴ran ((V ⊗ E ) △ (𝑅 ⊗ V))𝐵 ↔ ∀𝑥(𝑥 ∈ 𝐵 ↔ 𝑥𝑅𝐴)) | ||
Theorem | brtxpsd2 35876* | Another common abbreviation for quantifier-free definitions. (Contributed by Scott Fenton, 21-Apr-2014.) |
⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V & ⊢ 𝑅 = (𝐶 ∖ ran ((V ⊗ E ) △ (𝑆 ⊗ V))) & ⊢ 𝐴𝐶𝐵 ⇒ ⊢ (𝐴𝑅𝐵 ↔ ∀𝑥(𝑥 ∈ 𝐵 ↔ 𝑥𝑆𝐴)) | ||
Theorem | brtxpsd3 35877* | A third common abbreviation for quantifier-free definitions. (Contributed by Scott Fenton, 3-May-2014.) |
⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V & ⊢ 𝑅 = (𝐶 ∖ ran ((V ⊗ E ) △ (𝑆 ⊗ V))) & ⊢ 𝐴𝐶𝐵 & ⊢ (𝑥 ∈ 𝑋 ↔ 𝑥𝑆𝐴) ⇒ ⊢ (𝐴𝑅𝐵 ↔ 𝐵 = 𝑋) | ||
Theorem | relbigcup 35878 | The Bigcup relationship is a relationship. (Contributed by Scott Fenton, 11-Apr-2012.) |
⊢ Rel Bigcup | ||
Theorem | brbigcup 35879 | Binary relation over Bigcup . (Contributed by Scott Fenton, 11-Apr-2012.) |
⊢ 𝐵 ∈ V ⇒ ⊢ (𝐴 Bigcup 𝐵 ↔ ∪ 𝐴 = 𝐵) | ||
Theorem | dfbigcup2 35880 | Bigcup using maps-to notation. (Contributed by Scott Fenton, 16-Apr-2012.) |
⊢ Bigcup = (𝑥 ∈ V ↦ ∪ 𝑥) | ||
Theorem | fobigcup 35881 | Bigcup maps the universe onto itself. (Contributed by Scott Fenton, 16-Apr-2012.) |
⊢ Bigcup :V–onto→V | ||
Theorem | fnbigcup 35882 | Bigcup is a function over the universal class. (Contributed by Scott Fenton, 11-Apr-2012.) |
⊢ Bigcup Fn V | ||
Theorem | fvbigcup 35883 | For sets, Bigcup yields union. (Contributed by Scott Fenton, 11-Apr-2012.) |
⊢ 𝐴 ∈ V ⇒ ⊢ ( Bigcup ‘𝐴) = ∪ 𝐴 | ||
Theorem | elfix 35884 | Membership in the fixpoints of a class. (Contributed by Scott Fenton, 11-Apr-2012.) |
⊢ 𝐴 ∈ V ⇒ ⊢ (𝐴 ∈ Fix 𝑅 ↔ 𝐴𝑅𝐴) | ||
Theorem | elfix2 35885 | Alternative membership in the fixpoint of a class. (Contributed by Scott Fenton, 11-Apr-2012.) |
⊢ Rel 𝑅 ⇒ ⊢ (𝐴 ∈ Fix 𝑅 ↔ 𝐴𝑅𝐴) | ||
Theorem | dffix2 35886 | The fixpoints of a class in terms of its range. (Contributed by Scott Fenton, 16-Apr-2012.) |
⊢ Fix 𝐴 = ran (𝐴 ∩ I ) | ||
Theorem | fixssdm 35887 | The fixpoints of a class are a subset of its domain. (Contributed by Scott Fenton, 16-Apr-2012.) |
⊢ Fix 𝐴 ⊆ dom 𝐴 | ||
Theorem | fixssrn 35888 | The fixpoints of a class are a subset of its range. (Contributed by Scott Fenton, 16-Apr-2012.) |
⊢ Fix 𝐴 ⊆ ran 𝐴 | ||
Theorem | fixcnv 35889 | The fixpoints of a class are the same as those of its converse. (Contributed by Scott Fenton, 16-Apr-2012.) |
⊢ Fix 𝐴 = Fix ◡𝐴 | ||
Theorem | fixun 35890 | The fixpoint operator distributes over union. (Contributed by Scott Fenton, 16-Apr-2012.) |
⊢ Fix (𝐴 ∪ 𝐵) = ( Fix 𝐴 ∪ Fix 𝐵) | ||
Theorem | ellimits 35891 | Membership in the class of all limit ordinals. (Contributed by Scott Fenton, 11-Apr-2012.) |
⊢ 𝐴 ∈ V ⇒ ⊢ (𝐴 ∈ Limits ↔ Lim 𝐴) | ||
Theorem | limitssson 35892 | The class of all limit ordinals is a subclass of the class of all ordinals. (Contributed by Scott Fenton, 11-Apr-2012.) |
⊢ Limits ⊆ On | ||
Theorem | dfom5b 35893 | A quantifier-free definition of ω that does not depend on ax-inf 9675. (Note: label was changed from dfom5 9687 to dfom5b 35893 to prevent naming conflict. NM, 12-Feb-2013.) (Contributed by Scott Fenton, 11-Apr-2012.) |
⊢ ω = (On ∩ ∩ Limits ) | ||
Theorem | sscoid 35894 | A condition for subset and composition with identity. (Contributed by Scott Fenton, 13-Apr-2018.) |
⊢ (𝐴 ⊆ ( I ∘ 𝐵) ↔ (Rel 𝐴 ∧ 𝐴 ⊆ 𝐵)) | ||
Theorem | dffun10 35895 | Another potential definition of functionality. Based on statements in http://people.math.gatech.edu/~belinfan/research/autoreas/otter/sum/fs/. (Contributed by Scott Fenton, 30-Aug-2017.) |
⊢ (Fun 𝐹 ↔ 𝐹 ⊆ ( I ∘ (V ∖ ((V ∖ I ) ∘ 𝐹)))) | ||
Theorem | elfuns 35896 | Membership in the class of all functions. (Contributed by Scott Fenton, 18-Feb-2013.) |
⊢ 𝐹 ∈ V ⇒ ⊢ (𝐹 ∈ Funs ↔ Fun 𝐹) | ||
Theorem | elfunsg 35897 | Closed form of elfuns 35896. (Contributed by Scott Fenton, 2-May-2014.) |
⊢ (𝐹 ∈ 𝑉 → (𝐹 ∈ Funs ↔ Fun 𝐹)) | ||
Theorem | brsingle 35898 | The binary relation form of the singleton function. (Contributed by Scott Fenton, 4-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.) |
⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V ⇒ ⊢ (𝐴Singleton𝐵 ↔ 𝐵 = {𝐴}) | ||
Theorem | elsingles 35899* | Membership in the class of all singletons. (Contributed by Scott Fenton, 19-Feb-2013.) |
⊢ (𝐴 ∈ Singletons ↔ ∃𝑥 𝐴 = {𝑥}) | ||
Theorem | fnsingle 35900 | The singleton relationship is a function over the universe. (Contributed by Scott Fenton, 4-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.) |
⊢ Singleton Fn V |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |