| Metamath
Proof Explorer Theorem List (p. 359 of 500) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30909) |
(30910-32432) |
(32433-49920) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | faclim 35801* | An infinite product expression relating to factorials. Originally due to Euler. (Contributed by Scott Fenton, 22-Nov-2017.) |
| ⊢ 𝐹 = (𝑛 ∈ ℕ ↦ (((1 + (1 / 𝑛))↑𝐴) / (1 + (𝐴 / 𝑛)))) ⇒ ⊢ (𝐴 ∈ ℕ0 → seq1( · , 𝐹) ⇝ (!‘𝐴)) | ||
| Theorem | iprodfac 35802* | An infinite product expression for factorial. (Contributed by Scott Fenton, 15-Dec-2017.) |
| ⊢ (𝐴 ∈ ℕ0 → (!‘𝐴) = ∏𝑘 ∈ ℕ (((1 + (1 / 𝑘))↑𝐴) / (1 + (𝐴 / 𝑘)))) | ||
| Theorem | faclim2 35803* | Another factorial limit due to Euler. (Contributed by Scott Fenton, 17-Dec-2017.) |
| ⊢ 𝐹 = (𝑛 ∈ ℕ ↦ (((!‘𝑛) · ((𝑛 + 1)↑𝑀)) / (!‘(𝑛 + 𝑀)))) ⇒ ⊢ (𝑀 ∈ ℕ0 → 𝐹 ⇝ 1) | ||
| Theorem | gcd32 35804 | Swap the second and third arguments of a gcd. (Contributed by Scott Fenton, 8-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.) |
| ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → ((𝐴 gcd 𝐵) gcd 𝐶) = ((𝐴 gcd 𝐶) gcd 𝐵)) | ||
| Theorem | gcdabsorb 35805 | Absorption law for gcd. (Contributed by Scott Fenton, 8-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.) |
| ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((𝐴 gcd 𝐵) gcd 𝐵) = (𝐴 gcd 𝐵)) | ||
| Theorem | dftr6 35806 | A potential definition of transitivity for sets. (Contributed by Scott Fenton, 18-Mar-2012.) |
| ⊢ 𝐴 ∈ V ⇒ ⊢ (Tr 𝐴 ↔ 𝐴 ∈ (V ∖ ran (( E ∘ E ) ∖ E ))) | ||
| Theorem | coep 35807* | Composition with the membership relation. (Contributed by Scott Fenton, 18-Feb-2013.) |
| ⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V ⇒ ⊢ (𝐴( E ∘ 𝑅)𝐵 ↔ ∃𝑥 ∈ 𝐵 𝐴𝑅𝑥) | ||
| Theorem | coepr 35808* | Composition with the converse membership relation. (Contributed by Scott Fenton, 18-Feb-2013.) |
| ⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V ⇒ ⊢ (𝐴(𝑅 ∘ ◡ E )𝐵 ↔ ∃𝑥 ∈ 𝐴 𝑥𝑅𝐵) | ||
| Theorem | dffr5 35809 | A quantifier-free definition of a well-founded relationship. (Contributed by Scott Fenton, 11-Apr-2011.) |
| ⊢ (𝑅 Fr 𝐴 ↔ (𝒫 𝐴 ∖ {∅}) ⊆ ran ( E ∖ ( E ∘ ◡𝑅))) | ||
| Theorem | dfso2 35810 | Quantifier-free definition of a strict order. (Contributed by Scott Fenton, 22-Feb-2013.) |
| ⊢ (𝑅 Or 𝐴 ↔ (𝑅 Po 𝐴 ∧ (𝐴 × 𝐴) ⊆ (𝑅 ∪ ( I ∪ ◡𝑅)))) | ||
| Theorem | br8 35811* | Substitution for an eight-place predicate. (Contributed by Scott Fenton, 26-Sep-2013.) (Revised by Mario Carneiro, 3-May-2015.) |
| ⊢ (𝑎 = 𝐴 → (𝜑 ↔ 𝜓)) & ⊢ (𝑏 = 𝐵 → (𝜓 ↔ 𝜒)) & ⊢ (𝑐 = 𝐶 → (𝜒 ↔ 𝜃)) & ⊢ (𝑑 = 𝐷 → (𝜃 ↔ 𝜏)) & ⊢ (𝑒 = 𝐸 → (𝜏 ↔ 𝜂)) & ⊢ (𝑓 = 𝐹 → (𝜂 ↔ 𝜁)) & ⊢ (𝑔 = 𝐺 → (𝜁 ↔ 𝜎)) & ⊢ (ℎ = 𝐻 → (𝜎 ↔ 𝜌)) & ⊢ (𝑥 = 𝑋 → 𝑃 = 𝑄) & ⊢ 𝑅 = {〈𝑝, 𝑞〉 ∣ ∃𝑥 ∈ 𝑆 ∃𝑎 ∈ 𝑃 ∃𝑏 ∈ 𝑃 ∃𝑐 ∈ 𝑃 ∃𝑑 ∈ 𝑃 ∃𝑒 ∈ 𝑃 ∃𝑓 ∈ 𝑃 ∃𝑔 ∈ 𝑃 ∃ℎ ∈ 𝑃 (𝑝 = 〈〈𝑎, 𝑏〉, 〈𝑐, 𝑑〉〉 ∧ 𝑞 = 〈〈𝑒, 𝑓〉, 〈𝑔, ℎ〉〉 ∧ 𝜑)} ⇒ ⊢ (((𝑋 ∈ 𝑆 ∧ 𝐴 ∈ 𝑄 ∧ 𝐵 ∈ 𝑄) ∧ (𝐶 ∈ 𝑄 ∧ 𝐷 ∈ 𝑄 ∧ 𝐸 ∈ 𝑄) ∧ (𝐹 ∈ 𝑄 ∧ 𝐺 ∈ 𝑄 ∧ 𝐻 ∈ 𝑄)) → (〈〈𝐴, 𝐵〉, 〈𝐶, 𝐷〉〉𝑅〈〈𝐸, 𝐹〉, 〈𝐺, 𝐻〉〉 ↔ 𝜌)) | ||
| Theorem | br6 35812* | Substitution for a six-place predicate. (Contributed by Scott Fenton, 4-Oct-2013.) (Revised by Mario Carneiro, 3-May-2015.) |
| ⊢ (𝑎 = 𝐴 → (𝜑 ↔ 𝜓)) & ⊢ (𝑏 = 𝐵 → (𝜓 ↔ 𝜒)) & ⊢ (𝑐 = 𝐶 → (𝜒 ↔ 𝜃)) & ⊢ (𝑑 = 𝐷 → (𝜃 ↔ 𝜏)) & ⊢ (𝑒 = 𝐸 → (𝜏 ↔ 𝜂)) & ⊢ (𝑓 = 𝐹 → (𝜂 ↔ 𝜁)) & ⊢ (𝑥 = 𝑋 → 𝑃 = 𝑄) & ⊢ 𝑅 = {〈𝑝, 𝑞〉 ∣ ∃𝑥 ∈ 𝑆 ∃𝑎 ∈ 𝑃 ∃𝑏 ∈ 𝑃 ∃𝑐 ∈ 𝑃 ∃𝑑 ∈ 𝑃 ∃𝑒 ∈ 𝑃 ∃𝑓 ∈ 𝑃 (𝑝 = 〈𝑎, 〈𝑏, 𝑐〉〉 ∧ 𝑞 = 〈𝑑, 〈𝑒, 𝑓〉〉 ∧ 𝜑)} ⇒ ⊢ ((𝑋 ∈ 𝑆 ∧ (𝐴 ∈ 𝑄 ∧ 𝐵 ∈ 𝑄 ∧ 𝐶 ∈ 𝑄) ∧ (𝐷 ∈ 𝑄 ∧ 𝐸 ∈ 𝑄 ∧ 𝐹 ∈ 𝑄)) → (〈𝐴, 〈𝐵, 𝐶〉〉𝑅〈𝐷, 〈𝐸, 𝐹〉〉 ↔ 𝜁)) | ||
| Theorem | br4 35813* | Substitution for a four-place predicate. (Contributed by Scott Fenton, 9-Oct-2013.) (Revised by Mario Carneiro, 14-Oct-2013.) |
| ⊢ (𝑎 = 𝐴 → (𝜑 ↔ 𝜓)) & ⊢ (𝑏 = 𝐵 → (𝜓 ↔ 𝜒)) & ⊢ (𝑐 = 𝐶 → (𝜒 ↔ 𝜃)) & ⊢ (𝑑 = 𝐷 → (𝜃 ↔ 𝜏)) & ⊢ (𝑥 = 𝑋 → 𝑃 = 𝑄) & ⊢ 𝑅 = {〈𝑝, 𝑞〉 ∣ ∃𝑥 ∈ 𝑆 ∃𝑎 ∈ 𝑃 ∃𝑏 ∈ 𝑃 ∃𝑐 ∈ 𝑃 ∃𝑑 ∈ 𝑃 (𝑝 = 〈𝑎, 𝑏〉 ∧ 𝑞 = 〈𝑐, 𝑑〉 ∧ 𝜑)} ⇒ ⊢ ((𝑋 ∈ 𝑆 ∧ (𝐴 ∈ 𝑄 ∧ 𝐵 ∈ 𝑄) ∧ (𝐶 ∈ 𝑄 ∧ 𝐷 ∈ 𝑄)) → (〈𝐴, 𝐵〉𝑅〈𝐶, 𝐷〉 ↔ 𝜏)) | ||
| Theorem | cnvco1 35814 | Another distributive law of converse over class composition. (Contributed by Scott Fenton, 3-May-2014.) |
| ⊢ ◡(◡𝐴 ∘ 𝐵) = (◡𝐵 ∘ 𝐴) | ||
| Theorem | cnvco2 35815 | Another distributive law of converse over class composition. (Contributed by Scott Fenton, 3-May-2014.) |
| ⊢ ◡(𝐴 ∘ ◡𝐵) = (𝐵 ∘ ◡𝐴) | ||
| Theorem | eldm3 35816 | Quantifier-free definition of membership in a domain. (Contributed by Scott Fenton, 21-Jan-2017.) |
| ⊢ (𝐴 ∈ dom 𝐵 ↔ (𝐵 ↾ {𝐴}) ≠ ∅) | ||
| Theorem | elrn3 35817 | Quantifier-free definition of membership in a range. (Contributed by Scott Fenton, 21-Jan-2017.) |
| ⊢ (𝐴 ∈ ran 𝐵 ↔ (𝐵 ∩ (V × {𝐴})) ≠ ∅) | ||
| Theorem | pocnv 35818 | The converse of a partial ordering is still a partial ordering. (Contributed by Scott Fenton, 13-Jun-2018.) |
| ⊢ (𝑅 Po 𝐴 → ◡𝑅 Po 𝐴) | ||
| Theorem | socnv 35819 | The converse of a strict ordering is still a strict ordering. (Contributed by Scott Fenton, 13-Jun-2018.) |
| ⊢ (𝑅 Or 𝐴 → ◡𝑅 Or 𝐴) | ||
| Theorem | elintfv 35820* | Membership in an intersection of function values. (Contributed by Scott Fenton, 9-Dec-2021.) |
| ⊢ 𝑋 ∈ V ⇒ ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ⊆ 𝐴) → (𝑋 ∈ ∩ (𝐹 “ 𝐵) ↔ ∀𝑦 ∈ 𝐵 𝑋 ∈ (𝐹‘𝑦))) | ||
| Theorem | funpsstri 35821 | A condition for subset trichotomy for functions. (Contributed by Scott Fenton, 19-Apr-2011.) |
| ⊢ ((Fun 𝐻 ∧ (𝐹 ⊆ 𝐻 ∧ 𝐺 ⊆ 𝐻) ∧ (dom 𝐹 ⊆ dom 𝐺 ∨ dom 𝐺 ⊆ dom 𝐹)) → (𝐹 ⊊ 𝐺 ∨ 𝐹 = 𝐺 ∨ 𝐺 ⊊ 𝐹)) | ||
| Theorem | fundmpss 35822 | If a class 𝐹 is a proper subset of a function 𝐺, then dom 𝐹 ⊊ dom 𝐺. (Contributed by Scott Fenton, 20-Apr-2011.) |
| ⊢ (Fun 𝐺 → (𝐹 ⊊ 𝐺 → dom 𝐹 ⊊ dom 𝐺)) | ||
| Theorem | funsseq 35823 | Given two functions with equal domains, equality only requires one direction of the subset relationship. (Contributed by Scott Fenton, 24-Apr-2012.) (Proof shortened by Mario Carneiro, 3-May-2015.) |
| ⊢ ((Fun 𝐹 ∧ Fun 𝐺 ∧ dom 𝐹 = dom 𝐺) → (𝐹 = 𝐺 ↔ 𝐹 ⊆ 𝐺)) | ||
| Theorem | fununiq 35824 | The uniqueness condition of functions. (Contributed by Scott Fenton, 18-Feb-2013.) |
| ⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V & ⊢ 𝐶 ∈ V ⇒ ⊢ (Fun 𝐹 → ((𝐴𝐹𝐵 ∧ 𝐴𝐹𝐶) → 𝐵 = 𝐶)) | ||
| Theorem | funbreq 35825 | An equality condition for functions. (Contributed by Scott Fenton, 18-Feb-2013.) |
| ⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V & ⊢ 𝐶 ∈ V ⇒ ⊢ ((Fun 𝐹 ∧ 𝐴𝐹𝐵) → (𝐴𝐹𝐶 ↔ 𝐵 = 𝐶)) | ||
| Theorem | br1steq 35826 | Uniqueness condition for the binary relation 1st. (Contributed by Scott Fenton, 11-Apr-2014.) (Proof shortened by Mario Carneiro, 3-May-2015.) |
| ⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V ⇒ ⊢ (〈𝐴, 𝐵〉1st 𝐶 ↔ 𝐶 = 𝐴) | ||
| Theorem | br2ndeq 35827 | Uniqueness condition for the binary relation 2nd. (Contributed by Scott Fenton, 11-Apr-2014.) (Proof shortened by Mario Carneiro, 3-May-2015.) |
| ⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V ⇒ ⊢ (〈𝐴, 𝐵〉2nd 𝐶 ↔ 𝐶 = 𝐵) | ||
| Theorem | dfdm5 35828 | Definition of domain in terms of 1st and image. (Contributed by Scott Fenton, 11-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.) (Proof shortened by Peter Mazsa, 2-Oct-2022.) |
| ⊢ dom 𝐴 = ((1st ↾ (V × V)) “ 𝐴) | ||
| Theorem | dfrn5 35829 | Definition of range in terms of 2nd and image. (Contributed by Scott Fenton, 17-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.) (Proof shortened by Peter Mazsa, 2-Oct-2022.) |
| ⊢ ran 𝐴 = ((2nd ↾ (V × V)) “ 𝐴) | ||
| Theorem | opelco3 35830 | Alternate way of saying that an ordered pair is in a composition. (Contributed by Scott Fenton, 6-May-2018.) |
| ⊢ (〈𝐴, 𝐵〉 ∈ (𝐶 ∘ 𝐷) ↔ 𝐵 ∈ (𝐶 “ (𝐷 “ {𝐴}))) | ||
| Theorem | elima4 35831 | Quantifier-free expression saying that a class is a member of an image. (Contributed by Scott Fenton, 8-May-2018.) |
| ⊢ (𝐴 ∈ (𝑅 “ 𝐵) ↔ (𝑅 ∩ (𝐵 × {𝐴})) ≠ ∅) | ||
| Theorem | fv1stcnv 35832 | The value of the converse of 1st restricted to a singleton. (Contributed by Scott Fenton, 2-Jul-2020.) |
| ⊢ ((𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝑉) → (◡(1st ↾ (𝐴 × {𝑌}))‘𝑋) = 〈𝑋, 𝑌〉) | ||
| Theorem | fv2ndcnv 35833 | The value of the converse of 2nd restricted to a singleton. (Contributed by Scott Fenton, 2-Jul-2020.) |
| ⊢ ((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝐴) → (◡(2nd ↾ ({𝑋} × 𝐴))‘𝑌) = 〈𝑋, 𝑌〉) | ||
| Theorem | elpotr 35834* | A class of transitive sets is partially ordered by E. (Contributed by Scott Fenton, 15-Oct-2010.) |
| ⊢ (∀𝑧 ∈ 𝐴 Tr 𝑧 → E Po 𝐴) | ||
| Theorem | dford5reg 35835 | Given ax-reg 9488, an ordinal is a transitive class totally ordered by the membership relation. (Contributed by Scott Fenton, 28-Jan-2011.) |
| ⊢ (Ord 𝐴 ↔ (Tr 𝐴 ∧ E Or 𝐴)) | ||
| Theorem | dfon2lem1 35836 | Lemma for dfon2 35845. (Contributed by Scott Fenton, 28-Feb-2011.) |
| ⊢ Tr ∪ {𝑥 ∣ (𝜑 ∧ Tr 𝑥 ∧ 𝜓)} | ||
| Theorem | dfon2lem2 35837* | Lemma for dfon2 35845. (Contributed by Scott Fenton, 28-Feb-2011.) |
| ⊢ ∪ {𝑥 ∣ (𝑥 ⊆ 𝐴 ∧ 𝜑 ∧ 𝜓)} ⊆ 𝐴 | ||
| Theorem | dfon2lem3 35838* | Lemma for dfon2 35845. All sets satisfying the new definition are transitive and untangled. (Contributed by Scott Fenton, 25-Feb-2011.) |
| ⊢ (𝐴 ∈ 𝑉 → (∀𝑥((𝑥 ⊊ 𝐴 ∧ Tr 𝑥) → 𝑥 ∈ 𝐴) → (Tr 𝐴 ∧ ∀𝑧 ∈ 𝐴 ¬ 𝑧 ∈ 𝑧))) | ||
| Theorem | dfon2lem4 35839* | Lemma for dfon2 35845. If two sets satisfy the new definition, then one is a subset of the other. (Contributed by Scott Fenton, 25-Feb-2011.) |
| ⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V ⇒ ⊢ ((∀𝑥((𝑥 ⊊ 𝐴 ∧ Tr 𝑥) → 𝑥 ∈ 𝐴) ∧ ∀𝑦((𝑦 ⊊ 𝐵 ∧ Tr 𝑦) → 𝑦 ∈ 𝐵)) → (𝐴 ⊆ 𝐵 ∨ 𝐵 ⊆ 𝐴)) | ||
| Theorem | dfon2lem5 35840* | Lemma for dfon2 35845. Two sets satisfying the new definition also satisfy trichotomy with respect to ∈. (Contributed by Scott Fenton, 25-Feb-2011.) |
| ⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V ⇒ ⊢ ((∀𝑥((𝑥 ⊊ 𝐴 ∧ Tr 𝑥) → 𝑥 ∈ 𝐴) ∧ ∀𝑦((𝑦 ⊊ 𝐵 ∧ Tr 𝑦) → 𝑦 ∈ 𝐵)) → (𝐴 ∈ 𝐵 ∨ 𝐴 = 𝐵 ∨ 𝐵 ∈ 𝐴)) | ||
| Theorem | dfon2lem6 35841* | Lemma for dfon2 35845. A transitive class of sets satisfying the new definition satisfies the new definition. (Contributed by Scott Fenton, 25-Feb-2011.) |
| ⊢ ((Tr 𝑆 ∧ ∀𝑥 ∈ 𝑆 ∀𝑧((𝑧 ⊊ 𝑥 ∧ Tr 𝑧) → 𝑧 ∈ 𝑥)) → ∀𝑦((𝑦 ⊊ 𝑆 ∧ Tr 𝑦) → 𝑦 ∈ 𝑆)) | ||
| Theorem | dfon2lem7 35842* | Lemma for dfon2 35845. All elements of a new ordinal are new ordinals. (Contributed by Scott Fenton, 25-Feb-2011.) |
| ⊢ 𝐴 ∈ V ⇒ ⊢ (∀𝑥((𝑥 ⊊ 𝐴 ∧ Tr 𝑥) → 𝑥 ∈ 𝐴) → (𝐵 ∈ 𝐴 → ∀𝑦((𝑦 ⊊ 𝐵 ∧ Tr 𝑦) → 𝑦 ∈ 𝐵))) | ||
| Theorem | dfon2lem8 35843* | Lemma for dfon2 35845. The intersection of a nonempty class 𝐴 of new ordinals is itself a new ordinal and is contained within 𝐴 (Contributed by Scott Fenton, 26-Feb-2011.) |
| ⊢ ((𝐴 ≠ ∅ ∧ ∀𝑥 ∈ 𝐴 ∀𝑦((𝑦 ⊊ 𝑥 ∧ Tr 𝑦) → 𝑦 ∈ 𝑥)) → (∀𝑧((𝑧 ⊊ ∩ 𝐴 ∧ Tr 𝑧) → 𝑧 ∈ ∩ 𝐴) ∧ ∩ 𝐴 ∈ 𝐴)) | ||
| Theorem | dfon2lem9 35844* | Lemma for dfon2 35845. A class of new ordinals is well-founded by E. (Contributed by Scott Fenton, 3-Mar-2011.) |
| ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦((𝑦 ⊊ 𝑥 ∧ Tr 𝑦) → 𝑦 ∈ 𝑥) → E Fr 𝐴) | ||
| Theorem | dfon2 35845* | On consists of all sets that contain all its transitive proper subsets. This definition comes from J. R. Isbell, "A Definition of Ordinal Numbers", American Mathematical Monthly, vol 67 (1960), pp. 51-52. (Contributed by Scott Fenton, 20-Feb-2011.) |
| ⊢ On = {𝑥 ∣ ∀𝑦((𝑦 ⊊ 𝑥 ∧ Tr 𝑦) → 𝑦 ∈ 𝑥)} | ||
| Theorem | rdgprc0 35846 | The value of the recursive definition generator at ∅ when the base value is a proper class. (Contributed by Scott Fenton, 26-Mar-2014.) (Revised by Mario Carneiro, 19-Apr-2014.) |
| ⊢ (¬ 𝐼 ∈ V → (rec(𝐹, 𝐼)‘∅) = ∅) | ||
| Theorem | rdgprc 35847 | The value of the recursive definition generator when 𝐼 is a proper class. (Contributed by Scott Fenton, 26-Mar-2014.) (Revised by Mario Carneiro, 19-Apr-2014.) |
| ⊢ (¬ 𝐼 ∈ V → rec(𝐹, 𝐼) = rec(𝐹, ∅)) | ||
| Theorem | dfrdg2 35848* | Alternate definition of the recursive function generator when 𝐼 is a set. (Contributed by Scott Fenton, 26-Mar-2014.) (Revised by Mario Carneiro, 19-Apr-2014.) |
| ⊢ (𝐼 ∈ 𝑉 → rec(𝐹, 𝐼) = ∪ {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = if(𝑦 = ∅, 𝐼, if(Lim 𝑦, ∪ (𝑓 “ 𝑦), (𝐹‘(𝑓‘∪ 𝑦)))))}) | ||
| Theorem | dfrdg3 35849* | Generalization of dfrdg2 35848 to remove sethood requirement. (Contributed by Scott Fenton, 27-Mar-2014.) (Revised by Mario Carneiro, 19-Apr-2014.) |
| ⊢ rec(𝐹, 𝐼) = ∪ {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = if(𝑦 = ∅, if(𝐼 ∈ V, 𝐼, ∅), if(Lim 𝑦, ∪ (𝑓 “ 𝑦), (𝐹‘(𝑓‘∪ 𝑦)))))} | ||
| Theorem | axextdfeq 35850 | A version of ax-ext 2705 for use with defined equality. (Contributed by Scott Fenton, 12-Dec-2010.) |
| ⊢ ∃𝑧((𝑧 ∈ 𝑥 → 𝑧 ∈ 𝑦) → ((𝑧 ∈ 𝑦 → 𝑧 ∈ 𝑥) → (𝑥 ∈ 𝑤 → 𝑦 ∈ 𝑤))) | ||
| Theorem | ax8dfeq 35851 | A version of ax-8 2115 for use with defined equality. (Contributed by Scott Fenton, 12-Dec-2010.) |
| ⊢ ∃𝑧((𝑧 ∈ 𝑥 → 𝑧 ∈ 𝑦) → (𝑤 ∈ 𝑥 → 𝑤 ∈ 𝑦)) | ||
| Theorem | axextdist 35852 | ax-ext 2705 with distinctors instead of distinct variable conditions. (Contributed by Scott Fenton, 13-Dec-2010.) |
| ⊢ ((¬ ∀𝑧 𝑧 = 𝑥 ∧ ¬ ∀𝑧 𝑧 = 𝑦) → (∀𝑧(𝑧 ∈ 𝑥 ↔ 𝑧 ∈ 𝑦) → 𝑥 = 𝑦)) | ||
| Theorem | axextbdist 35853 | axextb 2708 with distinctors instead of distinct variable conditions. (Contributed by Scott Fenton, 13-Dec-2010.) |
| ⊢ ((¬ ∀𝑧 𝑧 = 𝑥 ∧ ¬ ∀𝑧 𝑧 = 𝑦) → (𝑥 = 𝑦 ↔ ∀𝑧(𝑧 ∈ 𝑥 ↔ 𝑧 ∈ 𝑦))) | ||
| Theorem | 19.12b 35854* | Version of 19.12vv 2349 with not-free hypotheses, instead of distinct variable conditions. (Contributed by Scott Fenton, 13-Dec-2010.) (Revised by Mario Carneiro, 11-Dec-2016.) |
| ⊢ Ⅎ𝑦𝜑 & ⊢ Ⅎ𝑥𝜓 ⇒ ⊢ (∃𝑥∀𝑦(𝜑 → 𝜓) ↔ ∀𝑦∃𝑥(𝜑 → 𝜓)) | ||
| Theorem | exnel 35855 | There is always a set not in 𝑦. (Contributed by Scott Fenton, 13-Dec-2010.) |
| ⊢ ∃𝑥 ¬ 𝑥 ∈ 𝑦 | ||
| Theorem | distel 35856 | Distinctors in terms of membership. (NOTE: this only works with relations where we can prove el 5384 and elirrv 9493.) (Contributed by Scott Fenton, 15-Dec-2010.) |
| ⊢ (¬ ∀𝑦 𝑦 = 𝑥 ↔ ¬ ∀𝑦 ¬ 𝑥 ∈ 𝑦) | ||
| Theorem | axextndbi 35857 | axextnd 10492 as a biconditional. (Contributed by Scott Fenton, 14-Dec-2010.) |
| ⊢ ∃𝑧(𝑥 = 𝑦 ↔ (𝑧 ∈ 𝑥 ↔ 𝑧 ∈ 𝑦)) | ||
| Theorem | hbntg 35858 | A more general form of hbnt 2298. (Contributed by Scott Fenton, 13-Dec-2010.) |
| ⊢ (∀𝑥(𝜑 → ∀𝑥𝜓) → (¬ 𝜓 → ∀𝑥 ¬ 𝜑)) | ||
| Theorem | hbimtg 35859 | A more general and closed form of hbim 2303. (Contributed by Scott Fenton, 13-Dec-2010.) |
| ⊢ ((∀𝑥(𝜑 → ∀𝑥𝜒) ∧ (𝜓 → ∀𝑥𝜃)) → ((𝜒 → 𝜓) → ∀𝑥(𝜑 → 𝜃))) | ||
| Theorem | hbaltg 35860 | A more general and closed form of hbal 2172. (Contributed by Scott Fenton, 13-Dec-2010.) |
| ⊢ (∀𝑥(𝜑 → ∀𝑦𝜓) → (∀𝑥𝜑 → ∀𝑦∀𝑥𝜓)) | ||
| Theorem | hbng 35861 | A more general form of hbn 2299. (Contributed by Scott Fenton, 13-Dec-2010.) |
| ⊢ (𝜑 → ∀𝑥𝜓) ⇒ ⊢ (¬ 𝜓 → ∀𝑥 ¬ 𝜑) | ||
| Theorem | hbimg 35862 | A more general form of hbim 2303. (Contributed by Scott Fenton, 13-Dec-2010.) |
| ⊢ (𝜑 → ∀𝑥𝜓) & ⊢ (𝜒 → ∀𝑥𝜃) ⇒ ⊢ ((𝜓 → 𝜒) → ∀𝑥(𝜑 → 𝜃)) | ||
| Syntax | cwsuc 35863 | Declare the syntax for well-founded successor. |
| class wsuc(𝑅, 𝐴, 𝑋) | ||
| Syntax | cwlim 35864 | Declare the syntax for well-founded limit class. |
| class WLim(𝑅, 𝐴) | ||
| Definition | df-wsuc 35865 | Define the concept of a successor in a well-founded set. (Contributed by Scott Fenton, 13-Jun-2018.) (Revised by AV, 10-Oct-2021.) |
| ⊢ wsuc(𝑅, 𝐴, 𝑋) = inf(Pred(◡𝑅, 𝐴, 𝑋), 𝐴, 𝑅) | ||
| Definition | df-wlim 35866* | Define the class of limit points of a well-founded set. (Contributed by Scott Fenton, 15-Jun-2018.) (Revised by AV, 10-Oct-2021.) |
| ⊢ WLim(𝑅, 𝐴) = {𝑥 ∈ 𝐴 ∣ (𝑥 ≠ inf(𝐴, 𝐴, 𝑅) ∧ 𝑥 = sup(Pred(𝑅, 𝐴, 𝑥), 𝐴, 𝑅))} | ||
| Theorem | wsuceq123 35867 | Equality theorem for well-founded successor. (Contributed by Scott Fenton, 13-Jun-2018.) (Proof shortened by AV, 10-Oct-2021.) |
| ⊢ ((𝑅 = 𝑆 ∧ 𝐴 = 𝐵 ∧ 𝑋 = 𝑌) → wsuc(𝑅, 𝐴, 𝑋) = wsuc(𝑆, 𝐵, 𝑌)) | ||
| Theorem | wsuceq1 35868 | Equality theorem for well-founded successor. (Contributed by Scott Fenton, 13-Jun-2018.) |
| ⊢ (𝑅 = 𝑆 → wsuc(𝑅, 𝐴, 𝑋) = wsuc(𝑆, 𝐴, 𝑋)) | ||
| Theorem | wsuceq2 35869 | Equality theorem for well-founded successor. (Contributed by Scott Fenton, 13-Jun-2018.) |
| ⊢ (𝐴 = 𝐵 → wsuc(𝑅, 𝐴, 𝑋) = wsuc(𝑅, 𝐵, 𝑋)) | ||
| Theorem | wsuceq3 35870 | Equality theorem for well-founded successor. (Contributed by Scott Fenton, 13-Jun-2018.) |
| ⊢ (𝑋 = 𝑌 → wsuc(𝑅, 𝐴, 𝑋) = wsuc(𝑅, 𝐴, 𝑌)) | ||
| Theorem | nfwsuc 35871 | Bound-variable hypothesis builder for well-founded successor. (Contributed by Scott Fenton, 13-Jun-2018.) (Proof shortened by AV, 10-Oct-2021.) |
| ⊢ Ⅎ𝑥𝑅 & ⊢ Ⅎ𝑥𝐴 & ⊢ Ⅎ𝑥𝑋 ⇒ ⊢ Ⅎ𝑥wsuc(𝑅, 𝐴, 𝑋) | ||
| Theorem | wlimeq12 35872 | Equality theorem for the limit class. (Contributed by Scott Fenton, 15-Jun-2018.) (Proof shortened by AV, 10-Oct-2021.) |
| ⊢ ((𝑅 = 𝑆 ∧ 𝐴 = 𝐵) → WLim(𝑅, 𝐴) = WLim(𝑆, 𝐵)) | ||
| Theorem | wlimeq1 35873 | Equality theorem for the limit class. (Contributed by Scott Fenton, 15-Jun-2018.) |
| ⊢ (𝑅 = 𝑆 → WLim(𝑅, 𝐴) = WLim(𝑆, 𝐴)) | ||
| Theorem | wlimeq2 35874 | Equality theorem for the limit class. (Contributed by Scott Fenton, 15-Jun-2018.) |
| ⊢ (𝐴 = 𝐵 → WLim(𝑅, 𝐴) = WLim(𝑅, 𝐵)) | ||
| Theorem | nfwlim 35875 | Bound-variable hypothesis builder for the limit class. (Contributed by Scott Fenton, 15-Jun-2018.) (Proof shortened by AV, 10-Oct-2021.) |
| ⊢ Ⅎ𝑥𝑅 & ⊢ Ⅎ𝑥𝐴 ⇒ ⊢ Ⅎ𝑥WLim(𝑅, 𝐴) | ||
| Theorem | elwlim 35876 | Membership in the limit class. (Contributed by Scott Fenton, 15-Jun-2018.) (Revised by AV, 10-Oct-2021.) |
| ⊢ (𝑋 ∈ WLim(𝑅, 𝐴) ↔ (𝑋 ∈ 𝐴 ∧ 𝑋 ≠ inf(𝐴, 𝐴, 𝑅) ∧ 𝑋 = sup(Pred(𝑅, 𝐴, 𝑋), 𝐴, 𝑅))) | ||
| Theorem | wzel 35877 | The zero of a well-founded set is a member of that set. (Contributed by Scott Fenton, 13-Jun-2018.) (Revised by AV, 10-Oct-2021.) |
| ⊢ ((𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ∧ 𝐴 ≠ ∅) → inf(𝐴, 𝐴, 𝑅) ∈ 𝐴) | ||
| Theorem | wsuclem 35878* | Lemma for the supremum properties of well-founded successor. (Contributed by Scott Fenton, 15-Jun-2018.) (Revised by AV, 10-Oct-2021.) |
| ⊢ (𝜑 → 𝑅 We 𝐴) & ⊢ (𝜑 → 𝑅 Se 𝐴) & ⊢ (𝜑 → 𝑋 ∈ 𝑉) & ⊢ (𝜑 → ∃𝑤 ∈ 𝐴 𝑋𝑅𝑤) ⇒ ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 (∀𝑦 ∈ Pred (◡𝑅, 𝐴, 𝑋) ¬ 𝑦𝑅𝑥 ∧ ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 → ∃𝑧 ∈ Pred (◡𝑅, 𝐴, 𝑋)𝑧𝑅𝑦))) | ||
| Theorem | wsucex 35879 | Existence theorem for well-founded successor. (Contributed by Scott Fenton, 16-Jun-2018.) (Proof shortened by AV, 10-Oct-2021.) |
| ⊢ (𝜑 → 𝑅 Or 𝐴) ⇒ ⊢ (𝜑 → wsuc(𝑅, 𝐴, 𝑋) ∈ V) | ||
| Theorem | wsuccl 35880* | If 𝑋 is a set with an 𝑅 successor in 𝐴, then its well-founded successor is a member of 𝐴. (Contributed by Scott Fenton, 15-Jun-2018.) (Proof shortened by AV, 10-Oct-2021.) |
| ⊢ (𝜑 → 𝑅 We 𝐴) & ⊢ (𝜑 → 𝑅 Se 𝐴) & ⊢ (𝜑 → 𝑋 ∈ 𝑉) & ⊢ (𝜑 → ∃𝑦 ∈ 𝐴 𝑋𝑅𝑦) ⇒ ⊢ (𝜑 → wsuc(𝑅, 𝐴, 𝑋) ∈ 𝐴) | ||
| Theorem | wsuclb 35881 | A well-founded successor is a lower bound on points after 𝑋. (Contributed by Scott Fenton, 16-Jun-2018.) (Proof shortened by AV, 10-Oct-2021.) |
| ⊢ (𝜑 → 𝑅 We 𝐴) & ⊢ (𝜑 → 𝑅 Se 𝐴) & ⊢ (𝜑 → 𝑋 ∈ 𝑉) & ⊢ (𝜑 → 𝑌 ∈ 𝐴) & ⊢ (𝜑 → 𝑋𝑅𝑌) ⇒ ⊢ (𝜑 → ¬ 𝑌𝑅wsuc(𝑅, 𝐴, 𝑋)) | ||
| Theorem | wlimss 35882 | The class of limit points is a subclass of the base class. (Contributed by Scott Fenton, 16-Jun-2018.) |
| ⊢ WLim(𝑅, 𝐴) ⊆ 𝐴 | ||
| Syntax | ctxp 35883 | Declare the syntax for tail Cartesian product. |
| class (𝐴 ⊗ 𝐵) | ||
| Syntax | cpprod 35884 | Declare the syntax for the parallel product. |
| class pprod(𝑅, 𝑆) | ||
| Syntax | csset 35885 | Declare the subset relationship class. |
| class SSet | ||
| Syntax | ctrans 35886 | Declare the transitive set class. |
| class Trans | ||
| Syntax | cbigcup 35887 | Declare the set union relationship. |
| class Bigcup | ||
| Syntax | cfix 35888 | Declare the syntax for the fixpoints of a class. |
| class Fix 𝐴 | ||
| Syntax | climits 35889 | Declare the class of limit ordinals. |
| class Limits | ||
| Syntax | cfuns 35890 | Declare the syntax for the class of all function. |
| class Funs | ||
| Syntax | csingle 35891 | Declare the syntax for the singleton function. |
| class Singleton | ||
| Syntax | csingles 35892 | Declare the syntax for the class of all singletons. |
| class Singletons | ||
| Syntax | cimage 35893 | Declare the syntax for the image functor. |
| class Image𝐴 | ||
| Syntax | ccart 35894 | Declare the syntax for the cartesian function. |
| class Cart | ||
| Syntax | cimg 35895 | Declare the syntax for the image function. |
| class Img | ||
| Syntax | cdomain 35896 | Declare the syntax for the domain function. |
| class Domain | ||
| Syntax | crange 35897 | Declare the syntax for the range function. |
| class Range | ||
| Syntax | capply 35898 | Declare the syntax for the application function. |
| class Apply | ||
| Syntax | ccup 35899 | Declare the syntax for the cup function. |
| class Cup | ||
| Syntax | ccap 35900 | Declare the syntax for the cap function. |
| class Cap | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |