HomeHome Metamath Proof Explorer
Theorem List (p. 359 of 459)
< Previous  Next >
Bad symbols? Try the
GIF version.

Mirrors  >  Metamath Home Page  >  MPE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Color key:    Metamath Proof Explorer  Metamath Proof Explorer
(1-28815)
  Hilbert Space Explorer  Hilbert Space Explorer
(28816-30338)
  Users' Mathboxes  Users' Mathboxes
(30339-45831)
 

Theorem List for Metamath Proof Explorer - 35801-35900   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Syntaxcdmn 35801 Extend class notation with the class of domains.
class Dmn
 
Definitiondf-prrngo 35802 Define the class of prime rings. A ring is prime if the zero ideal is a prime ideal. (Contributed by Jeff Madsen, 10-Jun-2010.)
PrRing = {𝑟 ∈ RingOps ∣ {(GId‘(1st𝑟))} ∈ (PrIdl‘𝑟)}
 
Definitiondf-dmn 35803 Define the class of (integral) domains. A domain is a commutative prime ring. (Contributed by Jeff Madsen, 10-Jun-2010.)
Dmn = (PrRing ∩ Com2)
 
Theoremisprrngo 35804 The predicate "is a prime ring". (Contributed by Jeff Madsen, 10-Jun-2010.)
𝐺 = (1st𝑅)    &   𝑍 = (GId‘𝐺)       (𝑅 ∈ PrRing ↔ (𝑅 ∈ RingOps ∧ {𝑍} ∈ (PrIdl‘𝑅)))
 
Theoremprrngorngo 35805 A prime ring is a ring. (Contributed by Jeff Madsen, 10-Jun-2010.)
(𝑅 ∈ PrRing → 𝑅 ∈ RingOps)
 
Theoremsmprngopr 35806 A simple ring (one whose only ideals are 0 and 𝑅) is a prime ring. (Contributed by Jeff Madsen, 6-Jan-2011.)
𝐺 = (1st𝑅)    &   𝐻 = (2nd𝑅)    &   𝑋 = ran 𝐺    &   𝑍 = (GId‘𝐺)    &   𝑈 = (GId‘𝐻)       ((𝑅 ∈ RingOps ∧ 𝑈𝑍 ∧ (Idl‘𝑅) = {{𝑍}, 𝑋}) → 𝑅 ∈ PrRing)
 
Theoremdivrngpr 35807 A division ring is a prime ring. (Contributed by Jeff Madsen, 6-Jan-2011.)
(𝑅 ∈ DivRingOps → 𝑅 ∈ PrRing)
 
Theoremisdmn 35808 The predicate "is a domain". (Contributed by Jeff Madsen, 10-Jun-2010.)
(𝑅 ∈ Dmn ↔ (𝑅 ∈ PrRing ∧ 𝑅 ∈ Com2))
 
Theoremisdmn2 35809 The predicate "is a domain". (Contributed by Jeff Madsen, 10-Jun-2010.)
(𝑅 ∈ Dmn ↔ (𝑅 ∈ PrRing ∧ 𝑅 ∈ CRingOps))
 
Theoremdmncrng 35810 A domain is a commutative ring. (Contributed by Jeff Madsen, 6-Jan-2011.)
(𝑅 ∈ Dmn → 𝑅 ∈ CRingOps)
 
Theoremdmnrngo 35811 A domain is a ring. (Contributed by Jeff Madsen, 6-Jan-2011.)
(𝑅 ∈ Dmn → 𝑅 ∈ RingOps)
 
Theoremflddmn 35812 A field is a domain. (Contributed by Jeff Madsen, 10-Jun-2010.)
(𝐾 ∈ Fld → 𝐾 ∈ Dmn)
 
20.20.22  Ideal generators
 
Syntaxcigen 35813 Extend class notation with the ideal generation function.
class IdlGen
 
Definitiondf-igen 35814* Define the ideal generated by a subset of a ring. (Contributed by Jeff Madsen, 10-Jun-2010.)
IdlGen = (𝑟 ∈ RingOps, 𝑠 ∈ 𝒫 ran (1st𝑟) ↦ {𝑗 ∈ (Idl‘𝑟) ∣ 𝑠𝑗})
 
Theoremigenval 35815* The ideal generated by a subset of a ring. (Contributed by Jeff Madsen, 10-Jun-2010.) (Proof shortened by Mario Carneiro, 20-Dec-2013.)
𝐺 = (1st𝑅)    &   𝑋 = ran 𝐺       ((𝑅 ∈ RingOps ∧ 𝑆𝑋) → (𝑅 IdlGen 𝑆) = {𝑗 ∈ (Idl‘𝑅) ∣ 𝑆𝑗})
 
Theoremigenss 35816 A set is a subset of the ideal it generates. (Contributed by Jeff Madsen, 10-Jun-2010.)
𝐺 = (1st𝑅)    &   𝑋 = ran 𝐺       ((𝑅 ∈ RingOps ∧ 𝑆𝑋) → 𝑆 ⊆ (𝑅 IdlGen 𝑆))
 
Theoremigenidl 35817 The ideal generated by a set is an ideal. (Contributed by Jeff Madsen, 10-Jun-2010.)
𝐺 = (1st𝑅)    &   𝑋 = ran 𝐺       ((𝑅 ∈ RingOps ∧ 𝑆𝑋) → (𝑅 IdlGen 𝑆) ∈ (Idl‘𝑅))
 
Theoremigenmin 35818 The ideal generated by a set is the minimal ideal containing that set. (Contributed by Jeff Madsen, 10-Jun-2010.)
((𝑅 ∈ RingOps ∧ 𝐼 ∈ (Idl‘𝑅) ∧ 𝑆𝐼) → (𝑅 IdlGen 𝑆) ⊆ 𝐼)
 
Theoremigenidl2 35819 The ideal generated by an ideal is that ideal. (Contributed by Jeff Madsen, 10-Jun-2010.)
((𝑅 ∈ RingOps ∧ 𝐼 ∈ (Idl‘𝑅)) → (𝑅 IdlGen 𝐼) = 𝐼)
 
Theoremigenval2 35820* The ideal generated by a subset of a ring. (Contributed by Jeff Madsen, 10-Jun-2010.)
𝐺 = (1st𝑅)    &   𝑋 = ran 𝐺       ((𝑅 ∈ RingOps ∧ 𝑆𝑋) → ((𝑅 IdlGen 𝑆) = 𝐼 ↔ (𝐼 ∈ (Idl‘𝑅) ∧ 𝑆𝐼 ∧ ∀𝑗 ∈ (Idl‘𝑅)(𝑆𝑗𝐼𝑗))))
 
Theoremprnc 35821* A principal ideal (an ideal generated by one element) in a commutative ring. (Contributed by Jeff Madsen, 10-Jun-2010.)
𝐺 = (1st𝑅)    &   𝐻 = (2nd𝑅)    &   𝑋 = ran 𝐺       ((𝑅 ∈ CRingOps ∧ 𝐴𝑋) → (𝑅 IdlGen {𝐴}) = {𝑥𝑋 ∣ ∃𝑦𝑋 𝑥 = (𝑦𝐻𝐴)})
 
Theoremisfldidl 35822 Determine if a ring is a field based on its ideals. (Contributed by Jeff Madsen, 10-Jun-2010.)
𝐺 = (1st𝐾)    &   𝐻 = (2nd𝐾)    &   𝑋 = ran 𝐺    &   𝑍 = (GId‘𝐺)    &   𝑈 = (GId‘𝐻)       (𝐾 ∈ Fld ↔ (𝐾 ∈ CRingOps ∧ 𝑈𝑍 ∧ (Idl‘𝐾) = {{𝑍}, 𝑋}))
 
Theoremisfldidl2 35823 Determine if a ring is a field based on its ideals. (Contributed by Jeff Madsen, 6-Jan-2011.)
𝐺 = (1st𝐾)    &   𝐻 = (2nd𝐾)    &   𝑋 = ran 𝐺    &   𝑍 = (GId‘𝐺)       (𝐾 ∈ Fld ↔ (𝐾 ∈ CRingOps ∧ 𝑋 ≠ {𝑍} ∧ (Idl‘𝐾) = {{𝑍}, 𝑋}))
 
Theoremispridlc 35824* The predicate "is a prime ideal". Alternate definition for commutative rings. (Contributed by Jeff Madsen, 19-Jun-2010.)
𝐺 = (1st𝑅)    &   𝐻 = (2nd𝑅)    &   𝑋 = ran 𝐺       (𝑅 ∈ CRingOps → (𝑃 ∈ (PrIdl‘𝑅) ↔ (𝑃 ∈ (Idl‘𝑅) ∧ 𝑃𝑋 ∧ ∀𝑎𝑋𝑏𝑋 ((𝑎𝐻𝑏) ∈ 𝑃 → (𝑎𝑃𝑏𝑃)))))
 
Theorempridlc 35825 Property of a prime ideal in a commutative ring. (Contributed by Jeff Madsen, 17-Jun-2011.)
𝐺 = (1st𝑅)    &   𝐻 = (2nd𝑅)    &   𝑋 = ran 𝐺       (((𝑅 ∈ CRingOps ∧ 𝑃 ∈ (PrIdl‘𝑅)) ∧ (𝐴𝑋𝐵𝑋 ∧ (𝐴𝐻𝐵) ∈ 𝑃)) → (𝐴𝑃𝐵𝑃))
 
Theorempridlc2 35826 Property of a prime ideal in a commutative ring. (Contributed by Jeff Madsen, 17-Jun-2011.)
𝐺 = (1st𝑅)    &   𝐻 = (2nd𝑅)    &   𝑋 = ran 𝐺       (((𝑅 ∈ CRingOps ∧ 𝑃 ∈ (PrIdl‘𝑅)) ∧ (𝐴 ∈ (𝑋𝑃) ∧ 𝐵𝑋 ∧ (𝐴𝐻𝐵) ∈ 𝑃)) → 𝐵𝑃)
 
Theorempridlc3 35827 Property of a prime ideal in a commutative ring. (Contributed by Jeff Madsen, 17-Jun-2011.)
𝐺 = (1st𝑅)    &   𝐻 = (2nd𝑅)    &   𝑋 = ran 𝐺       (((𝑅 ∈ CRingOps ∧ 𝑃 ∈ (PrIdl‘𝑅)) ∧ (𝐴 ∈ (𝑋𝑃) ∧ 𝐵 ∈ (𝑋𝑃))) → (𝐴𝐻𝐵) ∈ (𝑋𝑃))
 
Theoremisdmn3 35828* The predicate "is a domain", alternate expression. (Contributed by Jeff Madsen, 19-Jun-2010.)
𝐺 = (1st𝑅)    &   𝐻 = (2nd𝑅)    &   𝑋 = ran 𝐺    &   𝑍 = (GId‘𝐺)    &   𝑈 = (GId‘𝐻)       (𝑅 ∈ Dmn ↔ (𝑅 ∈ CRingOps ∧ 𝑈𝑍 ∧ ∀𝑎𝑋𝑏𝑋 ((𝑎𝐻𝑏) = 𝑍 → (𝑎 = 𝑍𝑏 = 𝑍))))
 
Theoremdmnnzd 35829 A domain has no zero-divisors (besides zero). (Contributed by Jeff Madsen, 19-Jun-2010.)
𝐺 = (1st𝑅)    &   𝐻 = (2nd𝑅)    &   𝑋 = ran 𝐺    &   𝑍 = (GId‘𝐺)       ((𝑅 ∈ Dmn ∧ (𝐴𝑋𝐵𝑋 ∧ (𝐴𝐻𝐵) = 𝑍)) → (𝐴 = 𝑍𝐵 = 𝑍))
 
Theoremdmncan1 35830 Cancellation law for domains. (Contributed by Jeff Madsen, 6-Jan-2011.)
𝐺 = (1st𝑅)    &   𝐻 = (2nd𝑅)    &   𝑋 = ran 𝐺    &   𝑍 = (GId‘𝐺)       (((𝑅 ∈ Dmn ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) ∧ 𝐴𝑍) → ((𝐴𝐻𝐵) = (𝐴𝐻𝐶) → 𝐵 = 𝐶))
 
Theoremdmncan2 35831 Cancellation law for domains. (Contributed by Jeff Madsen, 6-Jan-2011.)
𝐺 = (1st𝑅)    &   𝐻 = (2nd𝑅)    &   𝑋 = ran 𝐺    &   𝑍 = (GId‘𝐺)       (((𝑅 ∈ Dmn ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) ∧ 𝐶𝑍) → ((𝐴𝐻𝐶) = (𝐵𝐻𝐶) → 𝐴 = 𝐵))
 
20.21  Mathbox for Giovanni Mascellani
 
20.21.1  Tools for automatic proof building

The results in this section are mostly meant for being used by automatic proof building programs. As a result, they might appear less useful or meaningful than others to human beings.

 
Theoremefald2 35832 A proof by contradiction. (Contributed by Giovanni Mascellani, 15-Sep-2017.)
𝜑 → ⊥)       𝜑
 
Theoremnotbinot1 35833 Simplification rule of negation across a biconditional. (Contributed by Giovanni Mascellani, 15-Sep-2017.)
(¬ (¬ 𝜑𝜓) ↔ (𝜑𝜓))
 
Theorembicontr 35834 Biconditional of its own negation is a contradiction. (Contributed by Giovanni Mascellani, 15-Sep-2017.)
((¬ 𝜑𝜑) ↔ ⊥)
 
Theoremimpor 35835 An equivalent formula for implying a disjunction. (Contributed by Giovanni Mascellani, 15-Sep-2017.)
((𝜑 → (𝜓𝜒)) ↔ ((¬ 𝜑𝜓) ∨ 𝜒))
 
Theoremorfa 35836 The falsum can be removed from a disjunction. (Contributed by Giovanni Mascellani, 15-Sep-2017.)
((𝜑 ∨ ⊥) ↔ 𝜑)
 
Theoremnotbinot2 35837 Commutation rule between negation and biconditional. (Contributed by Giovanni Mascellani, 15-Sep-2017.)
(¬ (𝜑𝜓) ↔ (¬ 𝜑𝜓))
 
Theorembiimpor 35838 A rewriting rule for biconditional. (Contributed by Giovanni Mascellani, 15-Sep-2017.)
(((𝜑𝜓) → 𝜒) ↔ ((¬ 𝜑𝜓) ∨ 𝜒))
 
Theoremorfa1 35839 Add a contradicting disjunct to an antecedent. (Contributed by Giovanni Mascellani, 15-Sep-2017.)
(𝜑𝜓)       ((𝜑 ∨ ⊥) → 𝜓)
 
Theoremorfa2 35840 Remove a contradicting disjunct from an antecedent. (Contributed by Giovanni Mascellani, 15-Sep-2017.)
(𝜑 → ⊥)       ((𝜑𝜓) → 𝜓)
 
Theorembifald 35841 Infer the equivalence to a contradiction from a negation, in deduction form. (Contributed by Giovanni Mascellani, 15-Sep-2017.)
(𝜑 → ¬ 𝜓)       (𝜑 → (𝜓 ↔ ⊥))
 
Theoremorsild 35842 A lemma for not-or-not elimination, in deduction form. (Contributed by Giovanni Mascellani, 15-Sep-2017.)
(𝜑 → ¬ (𝜓𝜒))       (𝜑 → ¬ 𝜓)
 
Theoremorsird 35843 A lemma for not-or-not elimination, in deduction form. (Contributed by Giovanni Mascellani, 15-Sep-2017.)
(𝜑 → ¬ (𝜓𝜒))       (𝜑 → ¬ 𝜒)
 
Theoremcnf1dd 35844 A lemma for Conjunctive Normal Form unit propagation, in double deduction form. (Contributed by Giovanni Mascellani, 19-Mar-2018.)
(𝜑 → (𝜓 → ¬ 𝜒))    &   (𝜑 → (𝜓 → (𝜒𝜃)))       (𝜑 → (𝜓𝜃))
 
Theoremcnf2dd 35845 A lemma for Conjunctive Normal Form unit propagation, in double deduction form. (Contributed by Giovanni Mascellani, 19-Mar-2018.)
(𝜑 → (𝜓 → ¬ 𝜃))    &   (𝜑 → (𝜓 → (𝜒𝜃)))       (𝜑 → (𝜓𝜒))
 
Theoremcnfn1dd 35846 A lemma for Conjunctive Normal Form unit propagation, in double deduction form. (Contributed by Giovanni Mascellani, 19-Mar-2018.)
(𝜑 → (𝜓𝜒))    &   (𝜑 → (𝜓 → (¬ 𝜒𝜃)))       (𝜑 → (𝜓𝜃))
 
Theoremcnfn2dd 35847 A lemma for Conjunctive Normal Form unit propagation, in double deduction form. (Contributed by Giovanni Mascellani, 19-Mar-2018.)
(𝜑 → (𝜓𝜃))    &   (𝜑 → (𝜓 → (𝜒 ∨ ¬ 𝜃)))       (𝜑 → (𝜓𝜒))
 
Theoremor32dd 35848 A rearrangement of disjuncts, in double deduction form. (Contributed by Giovanni Mascellani, 19-Mar-2018.)
(𝜑 → (𝜓 → ((𝜒𝜃) ∨ 𝜏)))       (𝜑 → (𝜓 → ((𝜒𝜏) ∨ 𝜃)))
 
Theoremnotornotel1 35849 A lemma for not-or-not elimination, in deduction form. (Contributed by Giovanni Mascellani, 19-Mar-2018.)
(𝜑 → ¬ (¬ 𝜓𝜒))       (𝜑𝜓)
 
Theoremnotornotel2 35850 A lemma for not-or-not elimination, in deduction form. (Contributed by Giovanni Mascellani, 19-Mar-2018.)
(𝜑 → ¬ (𝜓 ∨ ¬ 𝜒))       (𝜑𝜒)
 
Theoremcontrd 35851 A proof by contradiction, in deduction form. (Contributed by Giovanni Mascellani, 19-Mar-2018.)
(𝜑 → (¬ 𝜓𝜒))    &   (𝜑 → (¬ 𝜓 → ¬ 𝜒))       (𝜑𝜓)
 
Theoreman12i 35852 An inference from commuting operands in a chain of conjunctions. (Contributed by Giovanni Mascellani, 22-May-2019.)
(𝜑 ∧ (𝜓𝜒))       (𝜓 ∧ (𝜑𝜒))
 
Theoremexmid2 35853 An excluded middle law. (Contributed by Giovanni Mascellani, 23-May-2019.)
((𝜓𝜑) → 𝜒)    &   ((¬ 𝜓𝜂) → 𝜒)       ((𝜑𝜂) → 𝜒)
 
Theoremselconj 35854 An inference for selecting one of a list of conjuncts. (Contributed by Giovanni Mascellani, 23-May-2019.)
(𝜑 ↔ (𝜓𝜒))       ((𝜂𝜑) ↔ (𝜓 ∧ (𝜂𝜒)))
 
Theoremtruconj 35855 Add true as a conjunct. (Contributed by Giovanni Mascellani, 23-May-2019.)
(𝜑 ↔ (⊤ ∧ 𝜑))
 
Theoremorel 35856 An inference for disjunction elimination. (Contributed by Giovanni Mascellani, 24-May-2019.)
((𝜓𝜂) → 𝜃)    &   ((𝜒𝜌) → 𝜃)    &   (𝜑 → (𝜓𝜒))       ((𝜑 ∧ (𝜂𝜌)) → 𝜃)
 
Theoremnegel 35857 An inference for negation elimination. (Contributed by Giovanni Mascellani, 24-May-2019.)
(𝜓𝜒)    &   (𝜑 → ¬ 𝜒)       ((𝜑𝜓) → ⊥)
 
Theorembotel 35858 An inference for bottom elimination. (Contributed by Giovanni Mascellani, 24-May-2019.)
(𝜑 → ⊥)       (𝜑𝜓)
 
Theoremtradd 35859 Add top ad a conjunct. (Contributed by Giovanni Mascellani, 24-May-2019.)
(𝜑𝜓)       (𝜑 ↔ (⊤ ∧ 𝜓))
 
Theoremgm-sbtru 35860 Substitution does not change truth. (Contributed by Giovanni Mascellani, 24-May-2019.)
𝐴 ∈ V       ([𝐴 / 𝑥]⊤ ↔ ⊤)
 
Theoremsbfal 35861 Substitution does not change falsity. (Contributed by Giovanni Mascellani, 24-May-2019.)
𝐴 ∈ V       ([𝐴 / 𝑥]⊥ ↔ ⊥)
 
Theoremsbcani 35862 Distribution of class substitution over conjunction, in inference form. (Contributed by Giovanni Mascellani, 27-May-2019.)
([𝐴 / 𝑥]𝜑𝜒)    &   ([𝐴 / 𝑥]𝜓𝜂)       ([𝐴 / 𝑥](𝜑𝜓) ↔ (𝜒𝜂))
 
Theoremsbcori 35863 Distribution of class substitution over disjunction, in inference form. (Contributed by Giovanni Mascellani, 27-May-2019.)
([𝐴 / 𝑥]𝜑𝜒)    &   ([𝐴 / 𝑥]𝜓𝜂)       ([𝐴 / 𝑥](𝜑𝜓) ↔ (𝜒𝜂))
 
Theoremsbcimi 35864 Distribution of class substitution over implication, in inference form. (Contributed by Giovanni Mascellani, 27-May-2019.)
𝐴 ∈ V    &   ([𝐴 / 𝑥]𝜑𝜒)    &   ([𝐴 / 𝑥]𝜓𝜂)       ([𝐴 / 𝑥](𝜑𝜓) ↔ (𝜒𝜂))
 
Theoremsbcni 35865 Move class substitution inside a negation, in inference form. (Contributed by Giovanni Mascellani, 27-May-2019.)
𝐴 ∈ V    &   ([𝐴 / 𝑥]𝜑𝜓)       ([𝐴 / 𝑥] ¬ 𝜑 ↔ ¬ 𝜓)
 
Theoremsbali 35866 Discard class substitution in a universal quantification when substituting the quantified variable, in inference form. (Contributed by Giovanni Mascellani, 27-May-2019.)
𝐴 ∈ V       ([𝐴 / 𝑥]𝑥𝜑 ↔ ∀𝑥𝜑)
 
Theoremsbexi 35867 Discard class substitution in an existential quantification when substituting the quantified variable, in inference form. (Contributed by Giovanni Mascellani, 27-May-2019.)
𝐴 ∈ V       ([𝐴 / 𝑥]𝑥𝜑 ↔ ∃𝑥𝜑)
 
Theoremsbcalf 35868* Move universal quantifier in and out of class substitution, with an explicit non-free variable condition. (Contributed by Giovanni Mascellani, 29-May-2019.)
𝑦𝐴       ([𝐴 / 𝑥]𝑦𝜑 ↔ ∀𝑦[𝐴 / 𝑥]𝜑)
 
Theoremsbcexf 35869* Move existential quantifier in and out of class substitution, with an explicit non-free variable condition. (Contributed by Giovanni Mascellani, 29-May-2019.)
𝑦𝐴       ([𝐴 / 𝑥]𝑦𝜑 ↔ ∃𝑦[𝐴 / 𝑥]𝜑)
 
Theoremsbcalfi 35870* Move universal quantifier in and out of class substitution, with an explicit non-free variable condition and in inference form. (Contributed by Giovanni Mascellani, 30-May-2019.)
𝑦𝐴    &   ([𝐴 / 𝑥]𝜑𝜓)       ([𝐴 / 𝑥]𝑦𝜑 ↔ ∀𝑦𝜓)
 
Theoremsbcexfi 35871* Move existential quantifier in and out of class substitution, with an explicit non-free variable condition and in inference form. (Contributed by Giovanni Mascellani, 30-May-2019.)
𝑦𝐴    &   ([𝐴 / 𝑥]𝜑𝜓)       ([𝐴 / 𝑥]𝑦𝜑 ↔ ∃𝑦𝜓)
 
Theoremspsbcdi 35872 A lemma for eliminating a universal quantifier, in inference form. (Contributed by Giovanni Mascellani, 30-May-2019.)
𝐴 ∈ V    &   (𝜑 → ∀𝑥𝜒)    &   ([𝐴 / 𝑥]𝜒𝜓)       (𝜑𝜓)
 
Theoremalrimii 35873* A lemma for introducing a universal quantifier, in inference form. (Contributed by Giovanni Mascellani, 30-May-2019.)
𝑦𝜑    &   (𝜑𝜓)    &   ([𝑦 / 𝑥]𝜒𝜓)    &   𝑦𝜒       (𝜑 → ∀𝑥𝜒)
 
Theoremspesbcdi 35874 A lemma for introducing an existential quantifier, in inference form. (Contributed by Giovanni Mascellani, 30-May-2019.)
(𝜑𝜓)    &   ([𝐴 / 𝑥]𝜒𝜓)       (𝜑 → ∃𝑥𝜒)
 
Theoremexlimddvf 35875 A lemma for eliminating an existential quantifier. (Contributed by Giovanni Mascellani, 30-May-2019.)
(𝜑 → ∃𝑥𝜃)    &   𝑥𝜓    &   ((𝜃𝜓) → 𝜒)    &   𝑥𝜒       ((𝜑𝜓) → 𝜒)
 
Theoremexlimddvfi 35876 A lemma for eliminating an existential quantifier, in inference form. (Contributed by Giovanni Mascellani, 31-May-2019.)
(𝜑 → ∃𝑥𝜃)    &   𝑦𝜃    &   𝑦𝜓    &   ([𝑦 / 𝑥]𝜃𝜂)    &   ((𝜂𝜓) → 𝜒)    &   𝑦𝜒       ((𝜑𝜓) → 𝜒)
 
Theoremsbceq1ddi 35877 A lemma for eliminating inequality, in inference form. (Contributed by Giovanni Mascellani, 31-May-2019.)
(𝜑𝐴 = 𝐵)    &   (𝜓𝜃)    &   ([𝐴 / 𝑥]𝜒𝜃)    &   ([𝐵 / 𝑥]𝜒𝜂)       ((𝜑𝜓) → 𝜂)
 
Theoremsbccom2lem 35878* Lemma for sbccom2 35879. (Contributed by Giovanni Mascellani, 31-May-2019.)
𝐴 ∈ V       ([𝐴 / 𝑥][𝐵 / 𝑦]𝜑[𝐴 / 𝑥𝐵 / 𝑦][𝐴 / 𝑥]𝜑)
 
Theoremsbccom2 35879* Commutative law for double class substitution. (Contributed by Giovanni Mascellani, 31-May-2019.)
𝐴 ∈ V       ([𝐴 / 𝑥][𝐵 / 𝑦]𝜑[𝐴 / 𝑥𝐵 / 𝑦][𝐴 / 𝑥]𝜑)
 
Theoremsbccom2f 35880* Commutative law for double class substitution, with nonfree variable condition. (Contributed by Giovanni Mascellani, 31-May-2019.)
𝐴 ∈ V    &   𝑦𝐴       ([𝐴 / 𝑥][𝐵 / 𝑦]𝜑[𝐴 / 𝑥𝐵 / 𝑦][𝐴 / 𝑥]𝜑)
 
Theoremsbccom2fi 35881* Commutative law for double class substitution, with nonfree variable condition and in inference form. (Contributed by Giovanni Mascellani, 1-Jun-2019.)
𝐴 ∈ V    &   𝑦𝐴    &   𝐴 / 𝑥𝐵 = 𝐶    &   ([𝐴 / 𝑥]𝜑𝜓)       ([𝐴 / 𝑥][𝐵 / 𝑦]𝜑[𝐶 / 𝑦]𝜓)
 
Theoremcsbcom2fi 35882* Commutative law for double class substitution in a class, with nonfree variable condition and in inference form. (Contributed by Giovanni Mascellani, 4-Jun-2019.)
𝐴 ∈ V    &   𝑦𝐴    &   𝐴 / 𝑥𝐵 = 𝐶    &   𝐴 / 𝑥𝐷 = 𝐸       𝐴 / 𝑥𝐵 / 𝑦𝐷 = 𝐶 / 𝑦𝐸
 
20.21.2  Tseitin axioms

A collection of Tseitin axioms used to convert a wff to Conjunctive Normal Form.

 
Theoremfald 35883 Refutation of falsity, in deduction form. (Contributed by Giovanni Mascellani, 24-Mar-2018.)
(𝜃 → ¬ ⊥)
 
Theoremtsim1 35884 A Tseitin axiom for logical implication, in deduction form. (Contributed by Giovanni Mascellani, 24-Mar-2018.)
(𝜃 → ((¬ 𝜑𝜓) ∨ ¬ (𝜑𝜓)))
 
Theoremtsim2 35885 A Tseitin axiom for logical implication, in deduction form. (Contributed by Giovanni Mascellani, 24-Mar-2018.)
(𝜃 → (𝜑 ∨ (𝜑𝜓)))
 
Theoremtsim3 35886 A Tseitin axiom for logical implication, in deduction form. (Contributed by Giovanni Mascellani, 24-Mar-2018.)
(𝜃 → (¬ 𝜓 ∨ (𝜑𝜓)))
 
Theoremtsbi1 35887 A Tseitin axiom for logical biconditional, in deduction form. (Contributed by Giovanni Mascellani, 24-Mar-2018.)
(𝜃 → ((¬ 𝜑 ∨ ¬ 𝜓) ∨ (𝜑𝜓)))
 
Theoremtsbi2 35888 A Tseitin axiom for logical biconditional, in deduction form. (Contributed by Giovanni Mascellani, 24-Mar-2018.)
(𝜃 → ((𝜑𝜓) ∨ (𝜑𝜓)))
 
Theoremtsbi3 35889 A Tseitin axiom for logical biconditional, in deduction form. (Contributed by Giovanni Mascellani, 24-Mar-2018.)
(𝜃 → ((𝜑 ∨ ¬ 𝜓) ∨ ¬ (𝜑𝜓)))
 
Theoremtsbi4 35890 A Tseitin axiom for logical biconditional, in deduction form. (Contributed by Giovanni Mascellani, 24-Mar-2018.)
(𝜃 → ((¬ 𝜑𝜓) ∨ ¬ (𝜑𝜓)))
 
Theoremtsxo1 35891 A Tseitin axiom for logical exclusive disjunction, in deduction form. (Contributed by Giovanni Mascellani, 24-Mar-2018.)
(𝜃 → ((¬ 𝜑 ∨ ¬ 𝜓) ∨ ¬ (𝜑𝜓)))
 
Theoremtsxo2 35892 A Tseitin axiom for logical exclusive disjunction, in deduction form. (Contributed by Giovanni Mascellani, 24-Mar-2018.)
(𝜃 → ((𝜑𝜓) ∨ ¬ (𝜑𝜓)))
 
Theoremtsxo3 35893 A Tseitin axiom for logical exclusive disjunction, in deduction form. (Contributed by Giovanni Mascellani, 24-Mar-2018.)
(𝜃 → ((𝜑 ∨ ¬ 𝜓) ∨ (𝜑𝜓)))
 
Theoremtsxo4 35894 A Tseitin axiom for logical exclusive disjunction, in deduction form. (Contributed by Giovanni Mascellani, 24-Mar-2018.)
(𝜃 → ((¬ 𝜑𝜓) ∨ (𝜑𝜓)))
 
Theoremtsan1 35895 A Tseitin axiom for logical conjunction, in deduction form. (Contributed by Giovanni Mascellani, 24-Mar-2018.)
(𝜃 → ((¬ 𝜑 ∨ ¬ 𝜓) ∨ (𝜑𝜓)))
 
Theoremtsan2 35896 A Tseitin axiom for logical conjunction, in deduction form. (Contributed by Giovanni Mascellani, 24-Mar-2018.)
(𝜃 → (𝜑 ∨ ¬ (𝜑𝜓)))
 
Theoremtsan3 35897 A Tseitin axiom for logical conjunction, in deduction form. (Contributed by Giovanni Mascellani, 24-Mar-2018.)
(𝜃 → (𝜓 ∨ ¬ (𝜑𝜓)))
 
Theoremtsna1 35898 A Tseitin axiom for logical incompatibility, in deduction form. (Contributed by Giovanni Mascellani, 24-Mar-2018.)
(𝜃 → ((¬ 𝜑 ∨ ¬ 𝜓) ∨ ¬ (𝜑𝜓)))
 
Theoremtsna2 35899 A Tseitin axiom for logical incompatibility, in deduction form. (Contributed by Giovanni Mascellani, 24-Mar-2018.)
(𝜃 → (𝜑 ∨ (𝜑𝜓)))
 
Theoremtsna3 35900 A Tseitin axiom for logical incompatibility, in deduction form. (Contributed by Giovanni Mascellani, 24-Mar-2018.)
(𝜃 → (𝜓 ∨ (𝜑𝜓)))
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15800 159 15801-15900 160 15901-16000 161 16001-16100 162 16101-16200 163 16201-16300 164 16301-16400 165 16401-16500 166 16501-16600 167 16601-16700 168 16701-16800 169 16801-16900 170 16901-17000 171 17001-17100 172 17101-17200 173 17201-17300 174 17301-17400 175 17401-17500 176 17501-17600 177 17601-17700 178 17701-17800 179 17801-17900 180 17901-18000 181 18001-18100 182 18101-18200 183 18201-18300 184 18301-18400 185 18401-18500 186 18501-18600 187 18601-18700 188 18701-18800 189 18801-18900 190 18901-19000 191 19001-19100 192 19101-19200 193 19201-19300 194 19301-19400 195 19401-19500 196 19501-19600 197 19601-19700 198 19701-19800 199 19801-19900 200 19901-20000 201 20001-20100 202 20101-20200 203 20201-20300 204 20301-20400 205 20401-20500 206 20501-20600 207 20601-20700 208 20701-20800 209 20801-20900 210 20901-21000 211 21001-21100 212 21101-21200 213 21201-21300 214 21301-21400 215 21401-21500 216 21501-21600 217 21601-21700 218 21701-21800 219 21801-21900 220 21901-22000 221 22001-22100 222 22101-22200 223 22201-22300 224 22301-22400 225 22401-22500 226 22501-22600 227 22601-22700 228 22701-22800 229 22801-22900 230 22901-23000 231 23001-23100 232 23101-23200 233 23201-23300 234 23301-23400 235 23401-23500 236 23501-23600 237 23601-23700 238 23701-23800 239 23801-23900 240 23901-24000 241 24001-24100 242 24101-24200 243 24201-24300 244 24301-24400 245 24401-24500 246 24501-24600 247 24601-24700 248 24701-24800 249 24801-24900 250 24901-25000 251 25001-25100 252 25101-25200 253 25201-25300 254 25301-25400 255 25401-25500 256 25501-25600 257 25601-25700 258 25701-25800 259 25801-25900 260 25901-26000 261 26001-26100 262 26101-26200 263 26201-26300 264 26301-26400 265 26401-26500 266 26501-26600 267 26601-26700 268 26701-26800 269 26801-26900 270 26901-27000 271 27001-27100 272 27101-27200 273 27201-27300 274 27301-27400 275 27401-27500 276 27501-27600 277 27601-27700 278 27701-27800 279 27801-27900 280 27901-28000 281 28001-28100 282 28101-28200 283 28201-28300 284 28301-28400 285 28401-28500 286 28501-28600 287 28601-28700 288 28701-28800 289 28801-28900 290 28901-29000 291 29001-29100 292 29101-29200 293 29201-29300 294 29301-29400 295 29401-29500 296 29501-29600 297 29601-29700 298 29701-29800 299 29801-29900 300 29901-30000 301 30001-30100 302 30101-30200 303 30201-30300 304 30301-30400 305 30401-30500 306 30501-30600 307 30601-30700 308 30701-30800 309 30801-30900 310 30901-31000 311 31001-31100 312 31101-31200 313 31201-31300 314 31301-31400 315 31401-31500 316 31501-31600 317 31601-31700 318 31701-31800 319 31801-31900 320 31901-32000 321 32001-32100 322 32101-32200 323 32201-32300 324 32301-32400 325 32401-32500 326 32501-32600 327 32601-32700 328 32701-32800 329 32801-32900 330 32901-33000 331 33001-33100 332 33101-33200 333 33201-33300 334 33301-33400 335 33401-33500 336 33501-33600 337 33601-33700 338 33701-33800 339 33801-33900 340 33901-34000 341 34001-34100 342 34101-34200 343 34201-34300 344 34301-34400 345 34401-34500 346 34501-34600 347 34601-34700 348 34701-34800 349 34801-34900 350 34901-35000 351 35001-35100 352 35101-35200 353 35201-35300 354 35301-35400 355 35401-35500 356 35501-35600 357 35601-35700 358 35701-35800 359 35801-35900 360 35901-36000 361 36001-36100 362 36101-36200 363 36201-36300 364 36301-36400 365 36401-36500 366 36501-36600 367 36601-36700 368 36701-36800 369 36801-36900 370 36901-37000 371 37001-37100 372 37101-37200 373 37201-37300 374 37301-37400 375 37401-37500 376 37501-37600 377 37601-37700 378 37701-37800 379 37801-37900 380 37901-38000 381 38001-38100 382 38101-38200 383 38201-38300 384 38301-38400 385 38401-38500 386 38501-38600 387 38601-38700 388 38701-38800 389 38801-38900 390 38901-39000 391 39001-39100 392 39101-39200 393 39201-39300 394 39301-39400 395 39401-39500 396 39501-39600 397 39601-39700 398 39701-39800 399 39801-39900 400 39901-40000 401 40001-40100 402 40101-40200 403 40201-40300 404 40301-40400 405 40401-40500 406 40501-40600 407 40601-40700 408 40701-40800 409 40801-40900 410 40901-41000 411 41001-41100 412 41101-41200 413 41201-41300 414 41301-41400 415 41401-41500 416 41501-41600 417 41601-41700 418 41701-41800 419 41801-41900 420 41901-42000 421 42001-42100 422 42101-42200 423 42201-42300 424 42301-42400 425 42401-42500 426 42501-42600 427 42601-42700 428 42701-42800 429 42801-42900 430 42901-43000 431 43001-43100 432 43101-43200 433 43201-43300 434 43301-43400 435 43401-43500 436 43501-43600 437 43601-43700 438 43701-43800 439 43801-43900 440 43901-44000 441 44001-44100 442 44101-44200 443 44201-44300 444 44301-44400 445 44401-44500 446 44501-44600 447 44601-44700 448 44701-44800 449 44801-44900 450 44901-45000 451 45001-45100 452 45101-45200 453 45201-45300 454 45301-45400 455 45401-45500 456 45501-45600 457 45601-45700 458 45701-45800 459 45801-45831
  Copyright terms: Public domain < Previous  Next >