Users' Mathboxes Mathbox for Wolf Lammen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  wl-impchain-com-2.4 Structured version   Visualization version   GIF version

Theorem wl-impchain-com-2.4 35535
Description: This theorem is in fact a copy of com24 95. It is another instantiation of theorems named after wl-impchain-com-n.m 35533. For more information see there. (Contributed by Wolf Lammen, 17-Nov-2019.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypothesis
Ref Expression
wl-impchain-com-2.4.h1 (𝜂 → (𝜃 → (𝜒 → (𝜓𝜑))))
Assertion
Ref Expression
wl-impchain-com-2.4 (𝜂 → (𝜓 → (𝜒 → (𝜃𝜑))))

Proof of Theorem wl-impchain-com-2.4
StepHypRef Expression
1 wl-impchain-com-2.4.h1 . . . 4 (𝜂 → (𝜃 → (𝜒 → (𝜓𝜑))))
21wl-impchain-com-1.2 35530 . . 3 (𝜃 → (𝜂 → (𝜒 → (𝜓𝜑))))
32wl-impchain-com-1.4 35532 . 2 (𝜓 → (𝜂 → (𝜒 → (𝜃𝜑))))
43wl-impchain-com-1.2 35530 1 (𝜂 → (𝜓 → (𝜒 → (𝜃𝜑))))
Colors of variables: wff setvar class
Syntax hints:  wi 4
This theorem was proved from axioms:  ax-mp 5  ax-luk1 35496  ax-luk2 35497  ax-luk3 35498
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator