Users' Mathboxes Mathbox for Wolf Lammen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  wl-impchain-com-2.3 Structured version   Visualization version   GIF version

Theorem wl-impchain-com-2.3 33618
Description: This theorem is in fact a copy of com23 86. It starts a series of theorems named after wl-impchain-com-n.m 33617. For more information see there. (Contributed by Wolf Lammen, 12-Nov-2019.) (New usage is discouraged.) (Proof modification is discouraged.)
Hypothesis
Ref Expression
wl-impchain-com-2.3.h1 (𝜃 → (𝜒 → (𝜓𝜑)))
Assertion
Ref Expression
wl-impchain-com-2.3 (𝜃 → (𝜓 → (𝜒𝜑)))

Proof of Theorem wl-impchain-com-2.3
StepHypRef Expression
1 wl-impchain-com-2.3.h1 . . . 4 (𝜃 → (𝜒 → (𝜓𝜑)))
21wl-impchain-com-1.2 33614 . . 3 (𝜒 → (𝜃 → (𝜓𝜑)))
32wl-impchain-com-1.3 33615 . 2 (𝜓 → (𝜃 → (𝜒𝜑)))
43wl-impchain-com-1.2 33614 1 (𝜃 → (𝜓 → (𝜒𝜑)))
Colors of variables: wff setvar class
Syntax hints:  wi 4
This theorem was proved from axioms:  ax-mp 5  ax-luk1 33580  ax-luk2 33581  ax-luk3 33582
This theorem is referenced by:  wl-impchain-com-3.2.1  33620  wl-impchain-a1-3  33624
  Copyright terms: Public domain W3C validator