![]() |
Metamath
Proof Explorer Theorem List (p. 371 of 474) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | ![]() (1-29923) |
![]() (29924-31446) |
![]() (31447-47372) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | symrelcoss2 37001 | The class of cosets by 𝑅 is symmetric, see dfsymrel2 37084. (Contributed by Peter Mazsa, 27-Dec-2018.) |
⊢ (◡ ≀ 𝑅 ⊆ ≀ 𝑅 ∧ Rel ≀ 𝑅) | ||
Theorem | cossssid 37002 | Equivalent expressions for the class of cosets by 𝑅 to be a subset of the identity class. (Contributed by Peter Mazsa, 27-Jul-2021.) |
⊢ ( ≀ 𝑅 ⊆ I ↔ ≀ 𝑅 ⊆ ( I ∩ (dom ≀ 𝑅 × ran ≀ 𝑅))) | ||
Theorem | cossssid2 37003* | Equivalent expressions for the class of cosets by 𝑅 to be a subset of the identity class. (Contributed by Peter Mazsa, 10-Mar-2019.) |
⊢ ( ≀ 𝑅 ⊆ I ↔ ∀𝑥∀𝑦(∃𝑢(𝑢𝑅𝑥 ∧ 𝑢𝑅𝑦) → 𝑥 = 𝑦)) | ||
Theorem | cossssid3 37004* | Equivalent expressions for the class of cosets by 𝑅 to be a subset of the identity class. (Contributed by Peter Mazsa, 10-Mar-2019.) |
⊢ ( ≀ 𝑅 ⊆ I ↔ ∀𝑢∀𝑥∀𝑦((𝑢𝑅𝑥 ∧ 𝑢𝑅𝑦) → 𝑥 = 𝑦)) | ||
Theorem | cossssid4 37005* | Equivalent expressions for the class of cosets by 𝑅 to be a subset of the identity class. (Contributed by Peter Mazsa, 31-Aug-2021.) |
⊢ ( ≀ 𝑅 ⊆ I ↔ ∀𝑢∃*𝑥 𝑢𝑅𝑥) | ||
Theorem | cossssid5 37006* | Equivalent expressions for the class of cosets by 𝑅 to be a subset of the identity class. (Contributed by Peter Mazsa, 5-Sep-2021.) |
⊢ ( ≀ 𝑅 ⊆ I ↔ ∀𝑥 ∈ ran 𝑅∀𝑦 ∈ ran 𝑅(𝑥 = 𝑦 ∨ ([𝑥]◡𝑅 ∩ [𝑦]◡𝑅) = ∅)) | ||
Theorem | brcosscnv 37007* | 𝐴 and 𝐵 are cosets by converse 𝑅: a binary relation. (Contributed by Peter Mazsa, 23-Jan-2019.) |
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 ≀ ◡𝑅𝐵 ↔ ∃𝑥(𝐴𝑅𝑥 ∧ 𝐵𝑅𝑥))) | ||
Theorem | brcosscnv2 37008 | 𝐴 and 𝐵 are cosets by converse 𝑅: a binary relation. (Contributed by Peter Mazsa, 12-Mar-2019.) |
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 ≀ ◡𝑅𝐵 ↔ ([𝐴]𝑅 ∩ [𝐵]𝑅) ≠ ∅)) | ||
Theorem | br1cosscnvxrn 37009 | 𝐴 and 𝐵 are cosets by the converse range Cartesian product: a binary relation. (Contributed by Peter Mazsa, 19-Apr-2020.) (Revised by Peter Mazsa, 21-Sep-2021.) |
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 ≀ ◡(𝑅 ⋉ 𝑆)𝐵 ↔ (𝐴 ≀ ◡𝑅𝐵 ∧ 𝐴 ≀ ◡𝑆𝐵))) | ||
Theorem | 1cosscnvxrn 37010 | Cosets by the converse range Cartesian product. (Contributed by Peter Mazsa, 19-Apr-2020.) (Revised by Peter Mazsa, 21-Sep-2021.) |
⊢ ≀ ◡(𝐴 ⋉ 𝐵) = ( ≀ ◡𝐴 ∩ ≀ ◡𝐵) | ||
Theorem | cosscnvssid3 37011* | Equivalent expressions for the class of cosets by the converse of 𝑅 to be a subset of the identity class. (Contributed by Peter Mazsa, 28-Jul-2021.) |
⊢ ( ≀ ◡𝑅 ⊆ I ↔ ∀𝑢∀𝑣∀𝑥((𝑢𝑅𝑥 ∧ 𝑣𝑅𝑥) → 𝑢 = 𝑣)) | ||
Theorem | cosscnvssid4 37012* | Equivalent expressions for the class of cosets by the converse of 𝑅 to be a subset of the identity class. (Contributed by Peter Mazsa, 31-Aug-2021.) |
⊢ ( ≀ ◡𝑅 ⊆ I ↔ ∀𝑥∃*𝑢 𝑢𝑅𝑥) | ||
Theorem | cosscnvssid5 37013* | Equivalent expressions for the class of cosets by the converse of the relation 𝑅 to be a subset of the identity class. (Contributed by Peter Mazsa, 5-Sep-2021.) |
⊢ (( ≀ ◡𝑅 ⊆ I ∧ Rel 𝑅) ↔ (∀𝑢 ∈ dom 𝑅∀𝑣 ∈ dom 𝑅(𝑢 = 𝑣 ∨ ([𝑢]𝑅 ∩ [𝑣]𝑅) = ∅) ∧ Rel 𝑅)) | ||
Theorem | coss0 37014 | Cosets by the empty set are the empty set. (Contributed by Peter Mazsa, 22-Oct-2019.) |
⊢ ≀ ∅ = ∅ | ||
Theorem | cossid 37015 | Cosets by the identity relation are the identity relation. (Contributed by Peter Mazsa, 16-Jan-2019.) |
⊢ ≀ I = I | ||
Theorem | cosscnvid 37016 | Cosets by the converse identity relation are the identity relation. (Contributed by Peter Mazsa, 27-Sep-2021.) |
⊢ ≀ ◡ I = I | ||
Theorem | trcoss 37017* | Sufficient condition for the transitivity of cosets by 𝑅. (Contributed by Peter Mazsa, 26-Dec-2018.) |
⊢ (∀𝑦∃*𝑢 𝑢𝑅𝑦 → ∀𝑥∀𝑦∀𝑧((𝑥 ≀ 𝑅𝑦 ∧ 𝑦 ≀ 𝑅𝑧) → 𝑥 ≀ 𝑅𝑧)) | ||
Theorem | eleccossin 37018 | Two ways of saying that the coset of 𝐴 and the coset of 𝐶 have the common element 𝐵. (Contributed by Peter Mazsa, 15-Oct-2021.) |
⊢ ((𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊) → (𝐵 ∈ ([𝐴] ≀ 𝑅 ∩ [𝐶] ≀ 𝑅) ↔ (𝐴 ≀ 𝑅𝐵 ∧ 𝐵 ≀ 𝑅𝐶))) | ||
Theorem | trcoss2 37019* | Equivalent expressions for the transitivity of cosets by 𝑅. (Contributed by Peter Mazsa, 4-Jul-2020.) (Revised by Peter Mazsa, 16-Oct-2021.) |
⊢ (∀𝑥∀𝑦∀𝑧((𝑥 ≀ 𝑅𝑦 ∧ 𝑦 ≀ 𝑅𝑧) → 𝑥 ≀ 𝑅𝑧) ↔ ∀𝑥∀𝑧(([𝑥] ≀ 𝑅 ∩ [𝑧] ≀ 𝑅) ≠ ∅ → ([𝑥]◡𝑅 ∩ [𝑧]◡𝑅) ≠ ∅)) | ||
Definition | df-rels 37020 |
Define the relations class. Proper class relations (like I, see
reli 5787) are not elements of it. The element of this
class and the
relation predicate are the same when 𝑅 is a set (see elrelsrel 37022).
The class of relations is a great tool we can use when we define classes of different relations as nullary class constants as required by the 2. point in our Guidelines https://us.metamath.org/mpeuni/mathbox.html 37022. When we want to define a specific class of relations as a nullary class constant, the appropriate method is the following: 1. We define the specific nullary class constant for general sets (see e.g. df-refs 37045), then 2. we get the required class of relations by the intersection of the class of general sets above with the class of relations df-rels 37020 (see df-refrels 37046 and the resulting dfrefrels2 37048 and dfrefrels3 37049). 3. Finally, in order to be able to work with proper classes (like iprc 7855) as well, we define the predicate of the relation (see df-refrel 37047) so that it is true for the relevant proper classes (see refrelid 37057), and that the element of the class of the required relations (e.g. elrefrels3 37054) and this predicate are the same in case of sets (see elrefrelsrel 37055). (Contributed by Peter Mazsa, 13-Jun-2018.) |
⊢ Rels = 𝒫 (V × V) | ||
Theorem | elrels2 37021 | The element of the relations class (df-rels 37020) and the relation predicate (df-rel 5645) are the same when 𝑅 is a set. (Contributed by Peter Mazsa, 14-Jun-2018.) |
⊢ (𝑅 ∈ 𝑉 → (𝑅 ∈ Rels ↔ 𝑅 ⊆ (V × V))) | ||
Theorem | elrelsrel 37022 | The element of the relations class (df-rels 37020) and the relation predicate are the same when 𝑅 is a set. (Contributed by Peter Mazsa, 24-Nov-2018.) |
⊢ (𝑅 ∈ 𝑉 → (𝑅 ∈ Rels ↔ Rel 𝑅)) | ||
Theorem | elrelsrelim 37023 | The element of the relations class is a relation. (Contributed by Peter Mazsa, 20-Jul-2019.) |
⊢ (𝑅 ∈ Rels → Rel 𝑅) | ||
Theorem | elrels5 37024 | Equivalent expressions for an element of the relations class. (Contributed by Peter Mazsa, 21-Jul-2021.) |
⊢ (𝑅 ∈ 𝑉 → (𝑅 ∈ Rels ↔ (𝑅 ↾ dom 𝑅) = 𝑅)) | ||
Theorem | elrels6 37025 | Equivalent expressions for an element of the relations class. (Contributed by Peter Mazsa, 21-Jul-2021.) |
⊢ (𝑅 ∈ 𝑉 → (𝑅 ∈ Rels ↔ (𝑅 ∩ (dom 𝑅 × ran 𝑅)) = 𝑅)) | ||
Theorem | elrelscnveq3 37026* | Two ways of saying a relation is symmetric. (Contributed by Peter Mazsa, 22-Aug-2021.) |
⊢ (𝑅 ∈ Rels → (𝑅 = ◡𝑅 ↔ ∀𝑥∀𝑦(𝑥𝑅𝑦 → 𝑦𝑅𝑥))) | ||
Theorem | elrelscnveq 37027 | Two ways of saying a relation is symmetric. (Contributed by Peter Mazsa, 22-Aug-2021.) |
⊢ (𝑅 ∈ Rels → (◡𝑅 ⊆ 𝑅 ↔ ◡𝑅 = 𝑅)) | ||
Theorem | elrelscnveq2 37028* | Two ways of saying a relation is symmetric. (Contributed by Peter Mazsa, 22-Aug-2021.) |
⊢ (𝑅 ∈ Rels → (◡𝑅 = 𝑅 ↔ ∀𝑥∀𝑦(𝑥𝑅𝑦 ↔ 𝑦𝑅𝑥))) | ||
Theorem | elrelscnveq4 37029* | Two ways of saying a relation is symmetric. (Contributed by Peter Mazsa, 22-Aug-2021.) |
⊢ (𝑅 ∈ Rels → (◡𝑅 ⊆ 𝑅 ↔ ∀𝑥∀𝑦(𝑥𝑅𝑦 ↔ 𝑦𝑅𝑥))) | ||
Theorem | cnvelrels 37030 | The converse of a set is an element of the class of relations. (Contributed by Peter Mazsa, 18-Aug-2019.) |
⊢ (𝐴 ∈ 𝑉 → ◡𝐴 ∈ Rels ) | ||
Theorem | cosselrels 37031 | Cosets of sets are elements of the relations class. Implies ⊢ (𝑅 ∈ Rels → ≀ 𝑅 ∈ Rels ). (Contributed by Peter Mazsa, 25-Aug-2021.) |
⊢ (𝐴 ∈ 𝑉 → ≀ 𝐴 ∈ Rels ) | ||
Theorem | cosscnvelrels 37032 | Cosets of converse sets are elements of the relations class. (Contributed by Peter Mazsa, 31-Aug-2021.) |
⊢ (𝐴 ∈ 𝑉 → ≀ ◡𝐴 ∈ Rels ) | ||
Definition | df-ssr 37033* |
Define the subsets class or the class of subset relations. Similar to
definitions of epsilon relation (df-eprel 5542) and identity relation
(df-id 5536) classes. Subset relation class and Scott
Fenton's subset
class df-sset 34517 are the same: S = SSet (compare dfssr2 37034 with
df-sset 34517), the only reason we do not use dfssr2 37034 as the base
definition of the subsets class is the way we defined the epsilon
relation and the identity relation classes.
The binary relation on the class of subsets and the subclass relationship (df-ss 3930) are the same, that is, (𝐴 S 𝐵 ↔ 𝐴 ⊆ 𝐵) when 𝐵 is a set, see brssr 37036. Yet in general we use the subclass relation 𝐴 ⊆ 𝐵 both for classes and for sets, see the comment of df-ss 3930. The only exception (aside from directly investigating the class S e.g. in relssr 37035 or in extssr 37044) is when we have a specific purpose with its usage, like in case of df-refs 37045 versus df-cnvrefs 37060, where we need S to define the class of reflexive sets in order to be able to define the class of converse reflexive sets with the help of the converse of S. The subsets class S has another place in set.mm as well: if we define extensional relation based on the common property in extid 36844, extep 36816 and extssr 37044, then "extrelssr" " |- ExtRel S " is a theorem along with "extrelep" " |- ExtRel E " and "extrelid" " |- ExtRel I " . (Contributed by Peter Mazsa, 25-Jul-2019.) |
⊢ S = {〈𝑥, 𝑦〉 ∣ 𝑥 ⊆ 𝑦} | ||
Theorem | dfssr2 37034 | Alternate definition of the subset relation. (Contributed by Peter Mazsa, 9-Aug-2021.) |
⊢ S = ((V × V) ∖ ran ( E ⋉ (V ∖ E ))) | ||
Theorem | relssr 37035 | The subset relation is a relation. (Contributed by Peter Mazsa, 1-Aug-2019.) |
⊢ Rel S | ||
Theorem | brssr 37036 | The subset relation and subclass relationship (df-ss 3930) are the same, that is, (𝐴 S 𝐵 ↔ 𝐴 ⊆ 𝐵) when 𝐵 is a set. (Contributed by Peter Mazsa, 31-Jul-2019.) |
⊢ (𝐵 ∈ 𝑉 → (𝐴 S 𝐵 ↔ 𝐴 ⊆ 𝐵)) | ||
Theorem | brssrid 37037 | Any set is a subset of itself. (Contributed by Peter Mazsa, 1-Aug-2019.) |
⊢ (𝐴 ∈ 𝑉 → 𝐴 S 𝐴) | ||
Theorem | issetssr 37038 | Two ways of expressing set existence. (Contributed by Peter Mazsa, 1-Aug-2019.) |
⊢ (𝐴 ∈ V ↔ 𝐴 S 𝐴) | ||
Theorem | brssrres 37039 | Restricted subset binary relation. (Contributed by Peter Mazsa, 25-Nov-2019.) |
⊢ (𝐶 ∈ 𝑉 → (𝐵( S ↾ 𝐴)𝐶 ↔ (𝐵 ∈ 𝐴 ∧ 𝐵 ⊆ 𝐶))) | ||
Theorem | br1cnvssrres 37040 | Restricted converse subset binary relation. (Contributed by Peter Mazsa, 25-Nov-2019.) |
⊢ (𝐵 ∈ 𝑉 → (𝐵◡( S ↾ 𝐴)𝐶 ↔ (𝐶 ∈ 𝐴 ∧ 𝐶 ⊆ 𝐵))) | ||
Theorem | brcnvssr 37041 | The converse of a subset relation swaps arguments. (Contributed by Peter Mazsa, 1-Aug-2019.) |
⊢ (𝐴 ∈ 𝑉 → (𝐴◡ S 𝐵 ↔ 𝐵 ⊆ 𝐴)) | ||
Theorem | brcnvssrid 37042 | Any set is a converse subset of itself. (Contributed by Peter Mazsa, 9-Jun-2021.) |
⊢ (𝐴 ∈ 𝑉 → 𝐴◡ S 𝐴) | ||
Theorem | br1cossxrncnvssrres 37043* | 〈𝐵, 𝐶〉 and 〈𝐷, 𝐸〉 are cosets by range Cartesian product with restricted converse subsets class: a binary relation. (Contributed by Peter Mazsa, 9-Jun-2021.) |
⊢ (((𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊) ∧ (𝐷 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌)) → (〈𝐵, 𝐶〉 ≀ (𝑅 ⋉ (◡ S ↾ 𝐴))〈𝐷, 𝐸〉 ↔ ∃𝑢 ∈ 𝐴 ((𝐶 ⊆ 𝑢 ∧ 𝑢𝑅𝐵) ∧ (𝐸 ⊆ 𝑢 ∧ 𝑢𝑅𝐷)))) | ||
Theorem | extssr 37044 | Property of subset relation, see also extid 36844, extep 36816 and the comment of df-ssr 37033. (Contributed by Peter Mazsa, 10-Jul-2019.) |
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ([𝐴]◡ S = [𝐵]◡ S ↔ 𝐴 = 𝐵)) | ||
Definition | df-refs 37045 |
Define the class of all reflexive sets. It is used only by df-refrels 37046.
We use subset relation S (df-ssr 37033) here to be able to define
converse reflexivity (df-cnvrefs 37060), see also the comment of df-ssr 37033.
The elements of this class are not necessarily relations (versus
df-refrels 37046).
Note the similarity of Definitions df-refs 37045, df-syms 37077 and df-trs 37107, cf. comments of dfrefrels2 37048. (Contributed by Peter Mazsa, 19-Jul-2019.) |
⊢ Refs = {𝑥 ∣ ( I ∩ (dom 𝑥 × ran 𝑥)) S (𝑥 ∩ (dom 𝑥 × ran 𝑥))} | ||
Definition | df-refrels 37046 |
Define the class of reflexive relations. This is practically dfrefrels2 37048
(which reveals that RefRels can not include proper
classes like I
as is elements, see comments of dfrefrels2 37048).
Another alternative definition is dfrefrels3 37049. The element of this class and the reflexive relation predicate (df-refrel 37047) are the same, that is, (𝑅 ∈ RefRels ↔ RefRel 𝑅) when 𝐴 is a set, see elrefrelsrel 37055. This definition is similar to the definitions of the classes of symmetric (df-symrels 37078) and transitive (df-trrels 37108) relations. (Contributed by Peter Mazsa, 7-Jul-2019.) |
⊢ RefRels = ( Refs ∩ Rels ) | ||
Definition | df-refrel 37047 | Define the reflexive relation predicate. (Read: 𝑅 is a reflexive relation.) This is a surprising definition, see the comment of dfrefrel3 37051. Alternate definitions are dfrefrel2 37050 and dfrefrel3 37051. For sets, being an element of the class of reflexive relations (df-refrels 37046) is equivalent to satisfying the reflexive relation predicate, that is (𝑅 ∈ RefRels ↔ RefRel 𝑅) when 𝑅 is a set, see elrefrelsrel 37055. (Contributed by Peter Mazsa, 16-Jul-2021.) |
⊢ ( RefRel 𝑅 ↔ (( I ∩ (dom 𝑅 × ran 𝑅)) ⊆ (𝑅 ∩ (dom 𝑅 × ran 𝑅)) ∧ Rel 𝑅)) | ||
Theorem | dfrefrels2 37048 |
Alternate definition of the class of reflexive relations. This is a 0-ary
class constant, which is recommended for definitions (see the 1.
Guideline at https://us.metamath.org/ileuni/mathbox.html).
Proper
classes (like I, see iprc 7855)
are not elements of this (or any)
class: if a class is an element of another class, it is not a proper class
but a set, see elex 3464. So if we use 0-ary constant classes as our
main
definitions, they are valid only for sets, not for proper classes. For
proper classes we use predicate-type definitions like df-refrel 37047. See
also the comment of df-rels 37020.
Note that while elementhood in the class of relations cancels restriction of 𝑟 in dfrefrels2 37048, it keeps restriction of I: this is why the very similar definitions df-refs 37045, df-syms 37077 and df-trs 37107 diverge when we switch from (general) sets to relations in dfrefrels2 37048, dfsymrels2 37080 and dftrrels2 37110. (Contributed by Peter Mazsa, 20-Jul-2019.) |
⊢ RefRels = {𝑟 ∈ Rels ∣ ( I ∩ (dom 𝑟 × ran 𝑟)) ⊆ 𝑟} | ||
Theorem | dfrefrels3 37049* | Alternate definition of the class of reflexive relations. (Contributed by Peter Mazsa, 8-Jul-2019.) |
⊢ RefRels = {𝑟 ∈ Rels ∣ ∀𝑥 ∈ dom 𝑟∀𝑦 ∈ ran 𝑟(𝑥 = 𝑦 → 𝑥𝑟𝑦)} | ||
Theorem | dfrefrel2 37050 | Alternate definition of the reflexive relation predicate. (Contributed by Peter Mazsa, 25-Jul-2021.) |
⊢ ( RefRel 𝑅 ↔ (( I ∩ (dom 𝑅 × ran 𝑅)) ⊆ 𝑅 ∧ Rel 𝑅)) | ||
Theorem | dfrefrel3 37051* |
Alternate definition of the reflexive relation predicate. A relation is
reflexive iff: for all elements on its domain and range, if an element
of its domain is the same as an element of its range, then there is the
relation between them.
Note that this is definitely not the definition we are accustomed to, like e.g. idref 7097 / idrefALT 6070 or df-reflexive 47333 ⊢ (𝑅Reflexive𝐴 ↔ (𝑅 ⊆ (𝐴 × 𝐴) ∧ ∀𝑥 ∈ 𝐴𝑥𝑅𝑥)). It turns out that the not-surprising definition which contains ∀𝑥 ∈ dom 𝑟𝑥𝑟𝑥 needs symmetry as well, see refsymrels3 37101. Only when this symmetry condition holds, like in case of equivalence relations, see dfeqvrels3 37124, can we write the traditional form ∀𝑥 ∈ dom 𝑟𝑥𝑟𝑥 for reflexive relations. For the special case with square Cartesian product when the two forms are equivalent see idinxpssinxp4 36854 where ⊢ (∀𝑥 ∈ 𝐴∀𝑦 ∈ 𝐴(𝑥 = 𝑦 → 𝑥𝑅𝑦) ↔ ∀𝑥 ∈ 𝐴𝑥𝑅𝑥). See also similar definition of the converse reflexive relations class dfcnvrefrel3 37066. (Contributed by Peter Mazsa, 8-Jul-2019.) |
⊢ ( RefRel 𝑅 ↔ (∀𝑥 ∈ dom 𝑅∀𝑦 ∈ ran 𝑅(𝑥 = 𝑦 → 𝑥𝑅𝑦) ∧ Rel 𝑅)) | ||
Theorem | dfrefrel5 37052* | Alternate definition of the reflexive relation predicate. (Contributed by Peter Mazsa, 12-Dec-2023.) |
⊢ ( RefRel 𝑅 ↔ (∀𝑥 ∈ (dom 𝑅 ∩ ran 𝑅)𝑥𝑅𝑥 ∧ Rel 𝑅)) | ||
Theorem | elrefrels2 37053 | Element of the class of reflexive relations. (Contributed by Peter Mazsa, 23-Jul-2019.) |
⊢ (𝑅 ∈ RefRels ↔ (( I ∩ (dom 𝑅 × ran 𝑅)) ⊆ 𝑅 ∧ 𝑅 ∈ Rels )) | ||
Theorem | elrefrels3 37054* | Element of the class of reflexive relations. (Contributed by Peter Mazsa, 23-Jul-2019.) |
⊢ (𝑅 ∈ RefRels ↔ (∀𝑥 ∈ dom 𝑅∀𝑦 ∈ ran 𝑅(𝑥 = 𝑦 → 𝑥𝑅𝑦) ∧ 𝑅 ∈ Rels )) | ||
Theorem | elrefrelsrel 37055 | For sets, being an element of the class of reflexive relations (df-refrels 37046) is equivalent to satisfying the reflexive relation predicate. (Contributed by Peter Mazsa, 25-Jul-2021.) |
⊢ (𝑅 ∈ 𝑉 → (𝑅 ∈ RefRels ↔ RefRel 𝑅)) | ||
Theorem | refreleq 37056 | Equality theorem for reflexive relation. (Contributed by Peter Mazsa, 15-Apr-2019.) (Revised by Peter Mazsa, 23-Sep-2021.) |
⊢ (𝑅 = 𝑆 → ( RefRel 𝑅 ↔ RefRel 𝑆)) | ||
Theorem | refrelid 37057 | Identity relation is reflexive. (Contributed by Peter Mazsa, 25-Jul-2021.) |
⊢ RefRel I | ||
Theorem | refrelcoss 37058 | The class of cosets by 𝑅 is reflexive. (Contributed by Peter Mazsa, 4-Jul-2020.) |
⊢ RefRel ≀ 𝑅 | ||
Theorem | refrelressn 37059 | Any class ' R ' restricted to the singleton of the set ' A ' (see ressn2 36977) is reflexive. (Contributed by Peter Mazsa, 12-Jun-2024.) |
⊢ (𝐴 ∈ 𝑉 → RefRel (𝑅 ↾ {𝐴})) | ||
Definition | df-cnvrefs 37060 | Define the class of all converse reflexive sets, see the comment of df-ssr 37033. It is used only by df-cnvrefrels 37061. (Contributed by Peter Mazsa, 22-Jul-2019.) |
⊢ CnvRefs = {𝑥 ∣ ( I ∩ (dom 𝑥 × ran 𝑥))◡ S (𝑥 ∩ (dom 𝑥 × ran 𝑥))} | ||
Definition | df-cnvrefrels 37061 |
Define the class of converse reflexive relations. This is practically
dfcnvrefrels2 37063 (which uses the traditional subclass
relation ⊆) :
we use converse subset relation (brcnvssr 37041) here to ensure the
comparability to the definitions of the classes of all reflexive
(df-ref 22893), symmetric (df-syms 37077) and transitive (df-trs 37107) sets.
We use this concept to define functions (df-funsALTV 37216, df-funALTV 37217) and disjoints (df-disjs 37239, df-disjALTV 37240). For sets, being an element of the class of converse reflexive relations is equivalent to satisfying the converse reflexive relation predicate, see elcnvrefrelsrel 37071. Alternate definitions are dfcnvrefrels2 37063 and dfcnvrefrels3 37064. (Contributed by Peter Mazsa, 7-Jul-2019.) |
⊢ CnvRefRels = ( CnvRefs ∩ Rels ) | ||
Definition | df-cnvrefrel 37062 | Define the converse reflexive relation predicate (read: 𝑅 is a converse reflexive relation), see also the comment of dfcnvrefrel3 37066. Alternate definitions are dfcnvrefrel2 37065 and dfcnvrefrel3 37066. (Contributed by Peter Mazsa, 16-Jul-2021.) |
⊢ ( CnvRefRel 𝑅 ↔ ((𝑅 ∩ (dom 𝑅 × ran 𝑅)) ⊆ ( I ∩ (dom 𝑅 × ran 𝑅)) ∧ Rel 𝑅)) | ||
Theorem | dfcnvrefrels2 37063 | Alternate definition of the class of converse reflexive relations. See the comment of dfrefrels2 37048. (Contributed by Peter Mazsa, 21-Jul-2021.) |
⊢ CnvRefRels = {𝑟 ∈ Rels ∣ 𝑟 ⊆ ( I ∩ (dom 𝑟 × ran 𝑟))} | ||
Theorem | dfcnvrefrels3 37064* | Alternate definition of the class of converse reflexive relations. (Contributed by Peter Mazsa, 22-Jul-2019.) |
⊢ CnvRefRels = {𝑟 ∈ Rels ∣ ∀𝑥 ∈ dom 𝑟∀𝑦 ∈ ran 𝑟(𝑥𝑟𝑦 → 𝑥 = 𝑦)} | ||
Theorem | dfcnvrefrel2 37065 | Alternate definition of the converse reflexive relation predicate. (Contributed by Peter Mazsa, 24-Jul-2019.) |
⊢ ( CnvRefRel 𝑅 ↔ (𝑅 ⊆ ( I ∩ (dom 𝑅 × ran 𝑅)) ∧ Rel 𝑅)) | ||
Theorem | dfcnvrefrel3 37066* | Alternate definition of the converse reflexive relation predicate. A relation is converse reflexive iff: for all elements on its domain and range, if for an element of its domain and for an element of its range there is the relation between them, then the two elements are the same, cf. the comment of dfrefrel3 37051. (Contributed by Peter Mazsa, 25-Jul-2021.) |
⊢ ( CnvRefRel 𝑅 ↔ (∀𝑥 ∈ dom 𝑅∀𝑦 ∈ ran 𝑅(𝑥𝑅𝑦 → 𝑥 = 𝑦) ∧ Rel 𝑅)) | ||
Theorem | dfcnvrefrel4 37067 | Alternate definition of the converse reflexive relation predicate. (Contributed by Peter Mazsa, 25-May-2024.) |
⊢ ( CnvRefRel 𝑅 ↔ (𝑅 ⊆ I ∧ Rel 𝑅)) | ||
Theorem | dfcnvrefrel5 37068* | Alternate definition of the converse reflexive relation predicate. (Contributed by Peter Mazsa, 25-May-2024.) |
⊢ ( CnvRefRel 𝑅 ↔ (∀𝑥∀𝑦(𝑥𝑅𝑦 → 𝑥 = 𝑦) ∧ Rel 𝑅)) | ||
Theorem | elcnvrefrels2 37069 | Element of the class of converse reflexive relations. (Contributed by Peter Mazsa, 25-Jul-2019.) |
⊢ (𝑅 ∈ CnvRefRels ↔ (𝑅 ⊆ ( I ∩ (dom 𝑅 × ran 𝑅)) ∧ 𝑅 ∈ Rels )) | ||
Theorem | elcnvrefrels3 37070* | Element of the class of converse reflexive relations. (Contributed by Peter Mazsa, 30-Aug-2021.) |
⊢ (𝑅 ∈ CnvRefRels ↔ (∀𝑥 ∈ dom 𝑅∀𝑦 ∈ ran 𝑅(𝑥𝑅𝑦 → 𝑥 = 𝑦) ∧ 𝑅 ∈ Rels )) | ||
Theorem | elcnvrefrelsrel 37071 | For sets, being an element of the class of converse reflexive relations (df-cnvrefrels 37061) is equivalent to satisfying the converse reflexive relation predicate. (Contributed by Peter Mazsa, 25-Jul-2021.) |
⊢ (𝑅 ∈ 𝑉 → (𝑅 ∈ CnvRefRels ↔ CnvRefRel 𝑅)) | ||
Theorem | cnvrefrelcoss2 37072 | Necessary and sufficient condition for a coset relation to be a converse reflexive relation. (Contributed by Peter Mazsa, 27-Jul-2021.) |
⊢ ( CnvRefRel ≀ 𝑅 ↔ ≀ 𝑅 ⊆ I ) | ||
Theorem | cosselcnvrefrels2 37073 | Necessary and sufficient condition for a coset relation to be an element of the converse reflexive relation class. (Contributed by Peter Mazsa, 25-Aug-2021.) |
⊢ ( ≀ 𝑅 ∈ CnvRefRels ↔ ( ≀ 𝑅 ⊆ I ∧ ≀ 𝑅 ∈ Rels )) | ||
Theorem | cosselcnvrefrels3 37074* | Necessary and sufficient condition for a coset relation to be an element of the converse reflexive relation class. (Contributed by Peter Mazsa, 30-Aug-2021.) |
⊢ ( ≀ 𝑅 ∈ CnvRefRels ↔ (∀𝑢∀𝑥∀𝑦((𝑢𝑅𝑥 ∧ 𝑢𝑅𝑦) → 𝑥 = 𝑦) ∧ ≀ 𝑅 ∈ Rels )) | ||
Theorem | cosselcnvrefrels4 37075* | Necessary and sufficient condition for a coset relation to be an element of the converse reflexive relation class. (Contributed by Peter Mazsa, 31-Aug-2021.) |
⊢ ( ≀ 𝑅 ∈ CnvRefRels ↔ (∀𝑢∃*𝑥 𝑢𝑅𝑥 ∧ ≀ 𝑅 ∈ Rels )) | ||
Theorem | cosselcnvrefrels5 37076* | Necessary and sufficient condition for a coset relation to be an element of the converse reflexive relation class. (Contributed by Peter Mazsa, 5-Sep-2021.) |
⊢ ( ≀ 𝑅 ∈ CnvRefRels ↔ (∀𝑥 ∈ ran 𝑅∀𝑦 ∈ ran 𝑅(𝑥 = 𝑦 ∨ ([𝑥]◡𝑅 ∩ [𝑦]◡𝑅) = ∅) ∧ ≀ 𝑅 ∈ Rels )) | ||
Definition | df-syms 37077 |
Define the class of all symmetric sets. It is used only by df-symrels 37078.
Note the similarity of Definitions df-refs 37045, df-syms 37077 and df-trs 37107, cf. the comment of dfrefrels2 37048. (Contributed by Peter Mazsa, 19-Jul-2019.) |
⊢ Syms = {𝑥 ∣ ◡(𝑥 ∩ (dom 𝑥 × ran 𝑥)) S (𝑥 ∩ (dom 𝑥 × ran 𝑥))} | ||
Definition | df-symrels 37078 |
Define the class of symmetric relations. For sets, being an element of
the class of symmetric relations is equivalent to satisfying the symmetric
relation predicate, see elsymrelsrel 37092. Alternate definitions are
dfsymrels2 37080, dfsymrels3 37081, dfsymrels4 37082 and dfsymrels5 37083.
This definition is similar to the definitions of the classes of reflexive (df-refrels 37046) and transitive (df-trrels 37108) relations. (Contributed by Peter Mazsa, 7-Jul-2019.) |
⊢ SymRels = ( Syms ∩ Rels ) | ||
Definition | df-symrel 37079 | Define the symmetric relation predicate. (Read: 𝑅 is a symmetric relation.) For sets, being an element of the class of symmetric relations (df-symrels 37078) is equivalent to satisfying the symmetric relation predicate, see elsymrelsrel 37092. Alternate definitions are dfsymrel2 37084 and dfsymrel3 37085. (Contributed by Peter Mazsa, 16-Jul-2021.) |
⊢ ( SymRel 𝑅 ↔ (◡(𝑅 ∩ (dom 𝑅 × ran 𝑅)) ⊆ (𝑅 ∩ (dom 𝑅 × ran 𝑅)) ∧ Rel 𝑅)) | ||
Theorem | dfsymrels2 37080 | Alternate definition of the class of symmetric relations. Cf. the comment of dfrefrels2 37048. (Contributed by Peter Mazsa, 20-Jul-2019.) |
⊢ SymRels = {𝑟 ∈ Rels ∣ ◡𝑟 ⊆ 𝑟} | ||
Theorem | dfsymrels3 37081* | Alternate definition of the class of symmetric relations. (Contributed by Peter Mazsa, 22-Jul-2021.) |
⊢ SymRels = {𝑟 ∈ Rels ∣ ∀𝑥∀𝑦(𝑥𝑟𝑦 → 𝑦𝑟𝑥)} | ||
Theorem | dfsymrels4 37082 | Alternate definition of the class of symmetric relations. (Contributed by Peter Mazsa, 20-Jul-2019.) |
⊢ SymRels = {𝑟 ∈ Rels ∣ ◡𝑟 = 𝑟} | ||
Theorem | dfsymrels5 37083* | Alternate definition of the class of symmetric relations. (Contributed by Peter Mazsa, 22-Jul-2021.) |
⊢ SymRels = {𝑟 ∈ Rels ∣ ∀𝑥∀𝑦(𝑥𝑟𝑦 ↔ 𝑦𝑟𝑥)} | ||
Theorem | dfsymrel2 37084 | Alternate definition of the symmetric relation predicate. (Contributed by Peter Mazsa, 19-Apr-2019.) (Revised by Peter Mazsa, 17-Aug-2021.) |
⊢ ( SymRel 𝑅 ↔ (◡𝑅 ⊆ 𝑅 ∧ Rel 𝑅)) | ||
Theorem | dfsymrel3 37085* | Alternate definition of the symmetric relation predicate. (Contributed by Peter Mazsa, 21-Apr-2019.) (Revised by Peter Mazsa, 17-Aug-2021.) |
⊢ ( SymRel 𝑅 ↔ (∀𝑥∀𝑦(𝑥𝑅𝑦 → 𝑦𝑅𝑥) ∧ Rel 𝑅)) | ||
Theorem | dfsymrel4 37086 | Alternate definition of the symmetric relation predicate. (Contributed by Peter Mazsa, 17-Aug-2021.) |
⊢ ( SymRel 𝑅 ↔ (◡𝑅 = 𝑅 ∧ Rel 𝑅)) | ||
Theorem | dfsymrel5 37087* | Alternate definition of the symmetric relation predicate. (Contributed by Peter Mazsa, 17-Aug-2021.) |
⊢ ( SymRel 𝑅 ↔ (∀𝑥∀𝑦(𝑥𝑅𝑦 ↔ 𝑦𝑅𝑥) ∧ Rel 𝑅)) | ||
Theorem | elsymrels2 37088 | Element of the class of symmetric relations. (Contributed by Peter Mazsa, 17-Aug-2021.) |
⊢ (𝑅 ∈ SymRels ↔ (◡𝑅 ⊆ 𝑅 ∧ 𝑅 ∈ Rels )) | ||
Theorem | elsymrels3 37089* | Element of the class of symmetric relations. (Contributed by Peter Mazsa, 17-Aug-2021.) |
⊢ (𝑅 ∈ SymRels ↔ (∀𝑥∀𝑦(𝑥𝑅𝑦 → 𝑦𝑅𝑥) ∧ 𝑅 ∈ Rels )) | ||
Theorem | elsymrels4 37090 | Element of the class of symmetric relations. (Contributed by Peter Mazsa, 17-Aug-2021.) |
⊢ (𝑅 ∈ SymRels ↔ (◡𝑅 = 𝑅 ∧ 𝑅 ∈ Rels )) | ||
Theorem | elsymrels5 37091* | Element of the class of symmetric relations. (Contributed by Peter Mazsa, 17-Aug-2021.) |
⊢ (𝑅 ∈ SymRels ↔ (∀𝑥∀𝑦(𝑥𝑅𝑦 ↔ 𝑦𝑅𝑥) ∧ 𝑅 ∈ Rels )) | ||
Theorem | elsymrelsrel 37092 | For sets, being an element of the class of symmetric relations (df-symrels 37078) is equivalent to satisfying the symmetric relation predicate. (Contributed by Peter Mazsa, 17-Aug-2021.) |
⊢ (𝑅 ∈ 𝑉 → (𝑅 ∈ SymRels ↔ SymRel 𝑅)) | ||
Theorem | symreleq 37093 | Equality theorem for symmetric relation. (Contributed by Peter Mazsa, 15-Apr-2019.) (Revised by Peter Mazsa, 23-Sep-2021.) |
⊢ (𝑅 = 𝑆 → ( SymRel 𝑅 ↔ SymRel 𝑆)) | ||
Theorem | symrelim 37094 | Symmetric relation implies that the domain and the range are equal. (Contributed by Peter Mazsa, 29-Dec-2021.) |
⊢ ( SymRel 𝑅 → dom 𝑅 = ran 𝑅) | ||
Theorem | symrelcoss 37095 | The class of cosets by 𝑅 is symmetric. (Contributed by Peter Mazsa, 20-Dec-2021.) |
⊢ SymRel ≀ 𝑅 | ||
Theorem | idsymrel 37096 | The identity relation is symmetric. (Contributed by AV, 19-Jun-2022.) |
⊢ SymRel I | ||
Theorem | epnsymrel 37097 | The membership (epsilon) relation is not symmetric. (Contributed by AV, 18-Jun-2022.) |
⊢ ¬ SymRel E | ||
Theorem | symrefref2 37098 | Symmetry is a sufficient condition for the equivalence of two versions of the reflexive relation, see also symrefref3 37099. (Contributed by Peter Mazsa, 19-Jul-2018.) |
⊢ (◡𝑅 ⊆ 𝑅 → (( I ∩ (dom 𝑅 × ran 𝑅)) ⊆ 𝑅 ↔ ( I ↾ dom 𝑅) ⊆ 𝑅)) | ||
Theorem | symrefref3 37099* | Symmetry is a sufficient condition for the equivalence of two versions of the reflexive relation, see also symrefref2 37098. (Contributed by Peter Mazsa, 23-Aug-2021.) (Proof modification is discouraged.) |
⊢ (∀𝑥∀𝑦(𝑥𝑅𝑦 → 𝑦𝑅𝑥) → (∀𝑥 ∈ dom 𝑅∀𝑦 ∈ ran 𝑅(𝑥 = 𝑦 → 𝑥𝑅𝑦) ↔ ∀𝑥 ∈ dom 𝑅 𝑥𝑅𝑥)) | ||
Theorem | refsymrels2 37100 | Elements of the class of reflexive relations which are elements of the class of symmetric relations as well (like the elements of the class of equivalence relations dfeqvrels2 37123) can use the restricted version for their reflexive part (see below), not just the ( I ∩ (dom 𝑟 × ran 𝑟)) ⊆ 𝑟 version of dfrefrels2 37048, cf. the comment of dfrefrels2 37048. (Contributed by Peter Mazsa, 20-Jul-2019.) |
⊢ ( RefRels ∩ SymRels ) = {𝑟 ∈ Rels ∣ (( I ↾ dom 𝑟) ⊆ 𝑟 ∧ ◡𝑟 ⊆ 𝑟)} |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |