| Metamath
Proof Explorer Theorem List (p. 371 of 497) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30845) |
(30846-32368) |
(32369-49617) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Axiom | ax-bj-bun 37001* | Axiom of binary union. (Contributed by BJ, 12-Jan-2025.) |
| ⊢ ∀𝑥∀𝑦∃𝑧∀𝑡(𝑡 ∈ 𝑧 ↔ (𝑡 ∈ 𝑥 ∨ 𝑡 ∈ 𝑦)) | ||
| Theorem | bj-unexg 37002 | Existence of binary unions of sets, proved from ax-bj-bun 37001. (Contributed by BJ, 12-Jan-2025.) (Proof modification is discouraged.) |
| ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 ∪ 𝐵) ∈ V) | ||
| Theorem | bj-prexg 37003 | Existence of unordered pairs formed on sets, proved from ax-bj-sn 36997 and ax-bj-bun 37001. Contrary to bj-prex 37004, this proof is intuitionistically valid and does not require ax-nul 5276. (Contributed by BJ, 12-Jan-2025.) (Proof modification is discouraged.) |
| ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → {𝐴, 𝐵} ∈ V) | ||
| Theorem | bj-prex 37004 | Existence of unordered pairs proved from ax-bj-sn 36997 and ax-bj-bun 37001. (Contributed by BJ, 12-Jan-2025.) (Proof modification is discouraged.) |
| ⊢ {𝐴, 𝐵} ∈ V | ||
| Theorem | bj-axadj 37005* | Two ways of stating the axiom of adjunction (which is the universal closure of either side, see ax-bj-adj 37006). (Contributed by BJ, 12-Jan-2025.) (Proof modification is discouraged.) |
| ⊢ ((𝑥 ∪ {𝑦}) ∈ V ↔ ∃𝑧∀𝑡(𝑡 ∈ 𝑧 ↔ (𝑡 ∈ 𝑥 ∨ 𝑡 = 𝑦))) | ||
| Axiom | ax-bj-adj 37006* | Axiom of adjunction. (Contributed by BJ, 19-Jan-2025.) |
| ⊢ ∀𝑥∀𝑦∃𝑧∀𝑡(𝑡 ∈ 𝑧 ↔ (𝑡 ∈ 𝑥 ∨ 𝑡 = 𝑦)) | ||
| Theorem | bj-adjg1 37007 | Existence of the result of the adjunction (generalized only in the first term since this suffices for current applications). (Contributed by BJ, 19-Jan-2025.) (Proof modification is discouraged.) |
| ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∪ {𝑥}) ∈ V) | ||
| Theorem | bj-snfromadj 37008 | Singleton from adjunction and empty set. (Contributed by BJ, 19-Jan-2025.) (Proof modification is discouraged.) |
| ⊢ {𝑥} ∈ V | ||
| Theorem | bj-prfromadj 37009 | Unordered pair from adjunction. (Contributed by BJ, 19-Jan-2025.) (Proof modification is discouraged.) |
| ⊢ {𝑥, 𝑦} ∈ V | ||
| Theorem | bj-adjfrombun 37010 | Adjunction from singleton and binary union. (Contributed by BJ, 19-Jan-2025.) (Proof modification is discouraged.) |
| ⊢ (𝑥 ∪ {𝑦}) ∈ V | ||
Miscellaneous theorems of set theory. | ||
| Theorem | eleq2w2ALT 37011 | Alternate proof of eleq2w2 2731 and special instance of eleq2 2823. (Contributed by BJ, 22-Sep-2024.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ (𝐴 = 𝐵 → (𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵)) | ||
| Theorem | bj-clel3gALT 37012* | Alternate proof of clel3g 3640. (Contributed by BJ, 1-Sep-2024.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ (𝐵 ∈ 𝑉 → (𝐴 ∈ 𝐵 ↔ ∃𝑥(𝑥 = 𝐵 ∧ 𝐴 ∈ 𝑥))) | ||
| Theorem | bj-pw0ALT 37013 | Alternate proof of pw0 4788. The proofs have a similar structure: pw0 4788 uses the definitions of powerclass and singleton as class abstractions, whereas bj-pw0ALT 37013 uses characterizations of their elements. Both proofs then use transitivity of a congruence relation (equality for pw0 4788 and biconditional for bj-pw0ALT 37013) to translate the property ss0b 4376 into the wanted result. To translate a biconditional into a class equality, pw0 4788 uses abbii 2802 (which yields an equality of class abstractions), while bj-pw0ALT 37013 uses eqriv 2732 (which requires a biconditional of membership of a given setvar variable). Note that abbii 2802, through its closed form abbi 2800, is proved from eqrdv 2733, which is the deduction form of eqriv 2732. In the other direction, velpw 4580 and velsn 4617 are proved from the definitions of powerclass and singleton using elabg 3655, which is a version of abbii 2802 suited for membership characterizations. (Contributed by BJ, 14-Apr-2024.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ 𝒫 ∅ = {∅} | ||
| Theorem | bj-sselpwuni 37014 | Quantitative version of ssexg 5293: a subset of an element of a class is an element of the powerclass of the union of that class. (Contributed by BJ, 6-Apr-2024.) |
| ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ∈ 𝑉) → 𝐴 ∈ 𝒫 ∪ 𝑉) | ||
| Theorem | bj-unirel 37015 | Quantitative version of uniexr 7755: if the union of a class is an element of a class, then that class is an element of the double powerclass of the union of this class. (Contributed by BJ, 6-Apr-2024.) |
| ⊢ (∪ 𝐴 ∈ 𝑉 → 𝐴 ∈ 𝒫 𝒫 ∪ 𝑉) | ||
| Theorem | bj-elpwg 37016 | If the intersection of two classes is a set, then inclusion among these classes is equivalent to membership in the powerclass. Common generalization of elpwg 4578 and elpw2g 5303 (the latter of which could be proved from it). (Contributed by BJ, 31-Dec-2023.) |
| ⊢ ((𝐴 ∩ 𝐵) ∈ 𝑉 → (𝐴 ∈ 𝒫 𝐵 ↔ 𝐴 ⊆ 𝐵)) | ||
| Theorem | bj-velpwALT 37017* | This theorem bj-velpwALT 37017 and the next theorem bj-elpwgALT 37018 are alternate proofs of velpw 4580 and elpwg 4578 respectively, where one proves first the setvar case and then generalizes using vtoclbg 3536 instead of proving first the general case using elab2g 3659 and then specifying. Here, this results in needing an extra DV condition, a longer combined proof and use of ax-12 2177. In other cases, that order is better (e.g., vsnex 5404 proved before snexg 5405). (Contributed by BJ, 17-Jan-2025.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ (𝑥 ∈ 𝒫 𝐴 ↔ 𝑥 ⊆ 𝐴) | ||
| Theorem | bj-elpwgALT 37018 | Alternate proof of elpwg 4578. See comment for bj-velpwALT 37017. (Contributed by BJ, 17-Jan-2025.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ 𝒫 𝐵 ↔ 𝐴 ⊆ 𝐵)) | ||
| Theorem | bj-vjust 37019 | Justification theorem for dfv2 3462 if it were the definition. See also vjust 3460. (Contributed by BJ, 30-Nov-2019.) (Proof modification is discouraged.) |
| ⊢ {𝑥 ∣ ⊤} = {𝑦 ∣ ⊤} | ||
| Theorem | bj-nul 37020* | Two formulations of the axiom of the empty set ax-nul 5276. Proposal: place it right before ax-nul 5276. (Contributed by BJ, 30-Nov-2019.) (Proof modification is discouraged.) |
| ⊢ (∅ ∈ V ↔ ∃𝑥∀𝑦 ¬ 𝑦 ∈ 𝑥) | ||
| Theorem | bj-nuliota 37021* | Definition of the empty set using the definite description binder. See also bj-nuliotaALT 37022. (Contributed by BJ, 30-Nov-2019.) (Proof modification is discouraged.) |
| ⊢ ∅ = (℩𝑥∀𝑦 ¬ 𝑦 ∈ 𝑥) | ||
| Theorem | bj-nuliotaALT 37022* | Alternate proof of bj-nuliota 37021. Note that this alternate proof uses the fact that ℩𝑥𝜑 evaluates to ∅ when there is no 𝑥 satisfying 𝜑 (iotanul 6508). This is an implementation detail of the encoding currently used in set.mm and should be avoided. (Contributed by BJ, 30-Nov-2019.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ ∅ = (℩𝑥∀𝑦 ¬ 𝑦 ∈ 𝑥) | ||
| Theorem | bj-vtoclgfALT 37023 | Alternate proof of vtoclgf 3548. Proof from vtoclgft 3531. (This may have been the original proof before shortening.) (Contributed by BJ, 30-Sep-2019.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ Ⅎ𝑥𝐴 & ⊢ Ⅎ𝑥𝜓 & ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) & ⊢ 𝜑 ⇒ ⊢ (𝐴 ∈ 𝑉 → 𝜓) | ||
| Theorem | bj-elsn12g 37024 | Join of elsng 4615 and elsn2g 4640. (Contributed by BJ, 18-Nov-2023.) |
| ⊢ ((𝐴 ∈ 𝑉 ∨ 𝐵 ∈ 𝑊) → (𝐴 ∈ {𝐵} ↔ 𝐴 = 𝐵)) | ||
| Theorem | bj-elsnb 37025 | Biconditional version of elsng 4615. (Contributed by BJ, 18-Nov-2023.) |
| ⊢ (𝐴 ∈ {𝐵} ↔ (𝐴 ∈ V ∧ 𝐴 = 𝐵)) | ||
| Theorem | bj-pwcfsdom 37026 | Remove hypothesis from pwcfsdom 10595. Illustration of how to remove a "proof-facilitating hypothesis". (Can use it to shorten theorems using pwcfsdom 10595.) (Contributed by BJ, 14-Sep-2019.) |
| ⊢ (ℵ‘𝐴) ≺ ((ℵ‘𝐴) ↑m (cf‘(ℵ‘𝐴))) | ||
| Theorem | bj-grur1 37027 | Remove hypothesis from grur1 10832. Illustration of how to remove a "definitional hypothesis". This makes its uses longer, but the theorem feels more self-contained. It looks preferable when the defined term appears only once in the conclusion. (Contributed by BJ, 14-Sep-2019.) |
| ⊢ ((𝑈 ∈ Univ ∧ 𝑈 ∈ ∪ (𝑅1 “ On)) → 𝑈 = (𝑅1‘(𝑈 ∩ On))) | ||
| Theorem | bj-bm1.3ii 37028* |
The extension of a predicate (𝜑(𝑧)) is included in a set
(𝑥) if and only if it is a set (𝑦).
Sufficiency is obvious,
and necessity is the content of the axiom of separation ax-sep 5266.
Similar to Theorem 1.3(ii) of [BellMachover] p. 463. (Contributed by
NM, 21-Jun-1993.) Generalized to a closed form biconditional with
existential quantifications using two different setvars 𝑥, 𝑦 (which
need not be disjoint). (Revised by BJ, 8-Aug-2022.)
TODO: move after sepexi 5271. Relabel ("sepbi"?). |
| ⊢ (∃𝑥∀𝑧(𝜑 → 𝑧 ∈ 𝑥) ↔ ∃𝑦∀𝑧(𝑧 ∈ 𝑦 ↔ 𝜑)) | ||
| Theorem | bj-dfid2ALT 37029 | Alternate version of dfid2 5550. (Contributed by BJ, 9-Nov-2024.) (Proof modification is discouraged.) Use df-id 5548 instead to make the semantics of the construction df-opab 5182 clearer. (New usage is discouraged.) |
| ⊢ I = {〈𝑥, 𝑥〉 ∣ ⊤} | ||
| Theorem | bj-0nelopab 37030 |
The empty set is never an element in an ordered-pair class abstraction.
(Contributed by Alexander van der Vekens, 5-Nov-2017.) (Proof shortened
by BJ, 22-Jul-2023.)
TODO: move to the main section when one can reorder sections so that we can use relopab 5803 (this is a very limited reordering). |
| ⊢ ¬ ∅ ∈ {〈𝑥, 𝑦〉 ∣ 𝜑} | ||
| Theorem | bj-brrelex12ALT 37031 | Two classes related by a binary relation are both sets. Alternate proof of brrelex12 5706. (Contributed by BJ, 14-Jul-2023.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ ((Rel 𝑅 ∧ 𝐴𝑅𝐵) → (𝐴 ∈ V ∧ 𝐵 ∈ V)) | ||
| Theorem | bj-epelg 37032 | The membership relation and the membership predicate agree when the "containing" class is a set. General version of epel 5556 and closed form of epeli 5555. (Contributed by Scott Fenton, 27-Mar-2011.) (Revised by Mario Carneiro, 28-Apr-2015.) TODO: move it to the main section after reordering to have brrelex1i 5710 available. (Proof shortened by BJ, 14-Jul-2023.) (Proof modification is discouraged.) |
| ⊢ (𝐵 ∈ 𝑉 → (𝐴 E 𝐵 ↔ 𝐴 ∈ 𝐵)) | ||
| Theorem | bj-epelb 37033 | Two classes are related by the membership relation if and only if they are related by the membership relation (i.e., the first is an element of the second) and the second is a set (hence so is the first). TODO: move to Main after reordering to have brrelex2i 5711 available. Check if it is shorter to prove bj-epelg 37032 first or bj-epelb 37033 first. (Contributed by BJ, 14-Jul-2023.) |
| ⊢ (𝐴 E 𝐵 ↔ (𝐴 ∈ 𝐵 ∧ 𝐵 ∈ V)) | ||
| Theorem | bj-nsnid 37034 | A set does not contain the singleton formed on it. More precisely, one can prove that a class contains the singleton formed on it if and only if it is proper and contains the empty set (since it is "the singleton formed on" any proper class, see snprc 4693): ⊢ ¬ ({𝐴} ∈ 𝐴 ↔ (∅ ∈ 𝐴 → 𝐴 ∈ V)). (Contributed by BJ, 4-Feb-2023.) |
| ⊢ (𝐴 ∈ 𝑉 → ¬ {𝐴} ∈ 𝐴) | ||
| Theorem | bj-rdg0gALT 37035 | Alternate proof of rdg0g 8439. More direct since it bypasses tz7.44-1 8418 and rdg0 8433 (and vtoclg 3533, vtoclga 3556). (Contributed by NM, 25-Apr-1995.) More direct proof. (Revised by BJ, 17-Nov-2024.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ (𝐴 ∈ 𝑉 → (rec(𝐹, 𝐴)‘∅) = 𝐴) | ||
This section treats the existing predicate Slot (df-slot 17199) as "evaluation at a class" and for the moment does not introduce new syntax for it. | ||
| Theorem | bj-evaleq 37036 | Equality theorem for the Slot construction. This is currently a duplicate of sloteq 17200 but may diverge from it if/when a token Eval is introduced for evaluation in order to separate it from Slot and any of its possible modifications. (Contributed by BJ, 27-Dec-2021.) (Proof modification is discouraged.) |
| ⊢ (𝐴 = 𝐵 → Slot 𝐴 = Slot 𝐵) | ||
| Theorem | bj-evalfun 37037 | The evaluation at a class is a function. (Contributed by BJ, 27-Dec-2021.) |
| ⊢ Fun Slot 𝐴 | ||
| Theorem | bj-evalfn 37038 | The evaluation at a class is a function on the universal class. (General form of slotfn 17201). (Contributed by Mario Carneiro, 22-Sep-2015.) (Revised by BJ, 27-Dec-2021.) |
| ⊢ Slot 𝐴 Fn V | ||
| Theorem | bj-evalval 37039 | Value of the evaluation at a class. (Closed form of strfvnd 17202 and strfvn 17203). (Contributed by NM, 9-Sep-2011.) (Revised by Mario Carneiro, 15-Nov-2014.) (Revised by BJ, 27-Dec-2021.) |
| ⊢ (𝐹 ∈ 𝑉 → (Slot 𝐴‘𝐹) = (𝐹‘𝐴)) | ||
| Theorem | bj-evalid 37040 | The evaluation at a set of the identity function is that set. (General form of ndxarg 17213.) The restriction to a set 𝑉 is necessary since the argument of the function Slot 𝐴 (like that of any function) has to be a set for the evaluation to be meaningful. (Contributed by BJ, 27-Dec-2021.) |
| ⊢ ((𝑉 ∈ 𝑊 ∧ 𝐴 ∈ 𝑉) → (Slot 𝐴‘( I ↾ 𝑉)) = 𝐴) | ||
| Theorem | bj-ndxarg 37041 | Proof of ndxarg 17213 from bj-evalid 37040. (Contributed by BJ, 27-Dec-2021.) (Proof modification is discouraged.) |
| ⊢ 𝐸 = Slot 𝑁 & ⊢ 𝑁 ∈ ℕ ⇒ ⊢ (𝐸‘ndx) = 𝑁 | ||
| Theorem | bj-evalidval 37042 | Closed general form of strndxid 17215. Both sides are equal to (𝐹‘𝐴) by bj-evalid 37040 and bj-evalval 37039 respectively, but bj-evalidval 37042 adds something to bj-evalid 37040 and bj-evalval 37039 in that Slot 𝐴 appears on both sides. (Contributed by BJ, 27-Dec-2021.) |
| ⊢ ((𝑉 ∈ 𝑊 ∧ 𝐴 ∈ 𝑉 ∧ 𝐹 ∈ 𝑈) → (𝐹‘(Slot 𝐴‘( I ↾ 𝑉))) = (Slot 𝐴‘𝐹)) | ||
| Syntax | celwise 37043 | Syntax for elementwise operations. |
| class elwise | ||
| Definition | df-elwise 37044* | Define the elementwise operation associated with a given operation. For instance, + is the addition of complex numbers (axaddf 11157), so if 𝐴 and 𝐵 are sets of complex numbers, then (𝐴(elwise‘ + )𝐵) is the set of numbers of the form (𝑥 + 𝑦) with 𝑥 ∈ 𝐴 and 𝑦 ∈ 𝐵. The set of odd natural numbers is (({2}(elwise‘ · )ℕ0)(elwise‘ + ){1}), or less formally 2ℕ0 + 1. (Contributed by BJ, 22-Dec-2021.) |
| ⊢ elwise = (𝑜 ∈ V ↦ (𝑥 ∈ V, 𝑦 ∈ V ↦ {𝑧 ∣ ∃𝑢 ∈ 𝑥 ∃𝑣 ∈ 𝑦 𝑧 = (𝑢𝑜𝑣)})) | ||
Many kinds of structures are given by families of subsets of a given set: Moore collections (df-mre 17596), topologies (df-top 22830), pi-systems, rings of sets, delta-rings, lambda-systems/Dynkin systems, algebras/fields of sets, sigma-algebras/sigma-fields/tribes (df-siga 34086), sigma rings, monotone classes, matroids/independent sets, bornologies, filters. There is a natural notion of structure induced on a subset. It is often given by an elementwise intersection, namely, the family of intersections of sets in the original family with the given subset. In this subsection, we define this notion and prove its main properties. Classical conditions on families of subsets include being nonempty, containing the whole set, containing the empty set, being stable under unions, intersections, subsets, supersets, (relative) complements. Therefore, we prove related properties for the elementwise intersection. We will call (𝑋 ↾t 𝐴) the elementwise intersection on the family 𝑋 by the class 𝐴. REMARK: many theorems are already in set.mm: "MM> SEARCH *rest* / JOIN". | ||
| Theorem | bj-rest00 37045 | An elementwise intersection on the empty family is the empty set. TODO: this is 0rest 17441. (Contributed by BJ, 27-Apr-2021.) |
| ⊢ (∅ ↾t 𝐴) = ∅ | ||
| Theorem | bj-restsn 37046 | An elementwise intersection on the singleton on a set is the singleton on the intersection by that set. Generalization of bj-restsn0 37049 and bj-restsnid 37051. (Contributed by BJ, 27-Apr-2021.) |
| ⊢ ((𝑌 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊) → ({𝑌} ↾t 𝐴) = {(𝑌 ∩ 𝐴)}) | ||
| Theorem | bj-restsnss 37047 | Special case of bj-restsn 37046. (Contributed by BJ, 27-Apr-2021.) |
| ⊢ ((𝑌 ∈ 𝑉 ∧ 𝐴 ⊆ 𝑌) → ({𝑌} ↾t 𝐴) = {𝐴}) | ||
| Theorem | bj-restsnss2 37048 | Special case of bj-restsn 37046. (Contributed by BJ, 27-Apr-2021.) |
| ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑌 ⊆ 𝐴) → ({𝑌} ↾t 𝐴) = {𝑌}) | ||
| Theorem | bj-restsn0 37049 | An elementwise intersection on the singleton on the empty set is the singleton on the empty set. Special case of bj-restsn 37046 and bj-restsnss2 37048. TODO: this is restsn 23106. (Contributed by BJ, 27-Apr-2021.) |
| ⊢ (𝐴 ∈ 𝑉 → ({∅} ↾t 𝐴) = {∅}) | ||
| Theorem | bj-restsn10 37050 | Special case of bj-restsn 37046, bj-restsnss 37047, and bj-rest10 37052. (Contributed by BJ, 27-Apr-2021.) |
| ⊢ (𝑋 ∈ 𝑉 → ({𝑋} ↾t ∅) = {∅}) | ||
| Theorem | bj-restsnid 37051 | The elementwise intersection on the singleton on a class by that class is the singleton on that class. Special case of bj-restsn 37046 and bj-restsnss 37047. (Contributed by BJ, 27-Apr-2021.) |
| ⊢ ({𝐴} ↾t 𝐴) = {𝐴} | ||
| Theorem | bj-rest10 37052 | An elementwise intersection on a nonempty family by the empty set is the singleton on the empty set. TODO: this generalizes rest0 23105 and could replace it. (Contributed by BJ, 27-Apr-2021.) |
| ⊢ (𝑋 ∈ 𝑉 → (𝑋 ≠ ∅ → (𝑋 ↾t ∅) = {∅})) | ||
| Theorem | bj-rest10b 37053 | Alternate version of bj-rest10 37052. (Contributed by BJ, 27-Apr-2021.) |
| ⊢ (𝑋 ∈ (𝑉 ∖ {∅}) → (𝑋 ↾t ∅) = {∅}) | ||
| Theorem | bj-restn0 37054 | An elementwise intersection on a nonempty family is nonempty. (Contributed by BJ, 27-Apr-2021.) |
| ⊢ ((𝑋 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊) → (𝑋 ≠ ∅ → (𝑋 ↾t 𝐴) ≠ ∅)) | ||
| Theorem | bj-restn0b 37055 | Alternate version of bj-restn0 37054. (Contributed by BJ, 27-Apr-2021.) |
| ⊢ ((𝑋 ∈ (𝑉 ∖ {∅}) ∧ 𝐴 ∈ 𝑊) → (𝑋 ↾t 𝐴) ≠ ∅) | ||
| Theorem | bj-restpw 37056 | The elementwise intersection on a powerset is the powerset of the intersection. This allows to prove for instance that the topology induced on a subset by the discrete topology is the discrete topology on that subset. See also restdis 23114 (which uses distop 22931 and restopn2 23113). (Contributed by BJ, 27-Apr-2021.) |
| ⊢ ((𝑌 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊) → (𝒫 𝑌 ↾t 𝐴) = 𝒫 (𝑌 ∩ 𝐴)) | ||
| Theorem | bj-rest0 37057 | An elementwise intersection on a family containing the empty set contains the empty set. (Contributed by BJ, 27-Apr-2021.) |
| ⊢ ((𝑋 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊) → (∅ ∈ 𝑋 → ∅ ∈ (𝑋 ↾t 𝐴))) | ||
| Theorem | bj-restb 37058 | An elementwise intersection by a set on a family containing a superset of that set contains that set. (Contributed by BJ, 27-Apr-2021.) |
| ⊢ (𝑋 ∈ 𝑉 → ((𝐴 ⊆ 𝐵 ∧ 𝐵 ∈ 𝑋) → 𝐴 ∈ (𝑋 ↾t 𝐴))) | ||
| Theorem | bj-restv 37059 | An elementwise intersection by a subset on a family containing the whole set contains the whole subset. (Contributed by BJ, 27-Apr-2021.) |
| ⊢ ((𝐴 ⊆ ∪ 𝑋 ∧ ∪ 𝑋 ∈ 𝑋) → 𝐴 ∈ (𝑋 ↾t 𝐴)) | ||
| Theorem | bj-resta 37060 | An elementwise intersection by a set on a family containing that set contains that set. (Contributed by BJ, 27-Apr-2021.) |
| ⊢ (𝑋 ∈ 𝑉 → (𝐴 ∈ 𝑋 → 𝐴 ∈ (𝑋 ↾t 𝐴))) | ||
| Theorem | bj-restuni 37061 | The union of an elementwise intersection by a set is equal to the intersection with that set of the union of the family. See also restuni 23098 and restuni2 23103. (Contributed by BJ, 27-Apr-2021.) |
| ⊢ ((𝑋 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊) → ∪ (𝑋 ↾t 𝐴) = (∪ 𝑋 ∩ 𝐴)) | ||
| Theorem | bj-restuni2 37062 | The union of an elementwise intersection on a family of sets by a subset is equal to that subset. See also restuni 23098 and restuni2 23103. (Contributed by BJ, 27-Apr-2021.) |
| ⊢ ((𝑋 ∈ 𝑉 ∧ 𝐴 ⊆ ∪ 𝑋) → ∪ (𝑋 ↾t 𝐴) = 𝐴) | ||
| Theorem | bj-restreg 37063 | A reformulation of the axiom of regularity using elementwise intersection. (RK: might have to be placed later since theorems in this section are to be moved early (in the section related to the algebra of sets).) (Contributed by BJ, 27-Apr-2021.) |
| ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐴 ≠ ∅) → ∅ ∈ (𝐴 ↾t 𝐴)) | ||
| Theorem | bj-raldifsn 37064* | All elements in a set satisfy a given property if and only if all but one satisfy that property and that one also does. Typically, this can be used for characterizations that are proved using different methods for a given element and for all others, for instance zero and nonzero numbers, or the empty set and nonempty sets. (Contributed by BJ, 7-Dec-2021.) |
| ⊢ (𝑥 = 𝐵 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (𝐵 ∈ 𝐴 → (∀𝑥 ∈ 𝐴 𝜑 ↔ (∀𝑥 ∈ (𝐴 ∖ {𝐵})𝜑 ∧ 𝜓))) | ||
| Theorem | bj-0int 37065* | If 𝐴 is a collection of subsets of 𝑋, like a Moore collection or a topology, two equivalent ways to say that arbitrary intersections of elements of 𝐴 relative to 𝑋 belong to some class 𝐵: the LHS singles out the empty intersection (the empty intersection relative to 𝑋 is 𝑋 and the intersection of a nonempty family of subsets of 𝑋 is included in 𝑋, so there is no need to intersect it with 𝑋). In typical applications, 𝐵 is 𝐴 itself. (Contributed by BJ, 7-Dec-2021.) |
| ⊢ (𝐴 ⊆ 𝒫 𝑋 → ((𝑋 ∈ 𝐵 ∧ ∀𝑥 ∈ (𝒫 𝐴 ∖ {∅})∩ 𝑥 ∈ 𝐵) ↔ ∀𝑥 ∈ 𝒫 𝐴(𝑋 ∩ ∩ 𝑥) ∈ 𝐵)) | ||
| Theorem | bj-mooreset 37066* |
A Moore collection is a set. Therefore, the class Moore of all
Moore sets defined in df-bj-moore 37068 is actually the class of all Moore
collections. This is also illustrated by the lack of sethood condition
in bj-ismoore 37069.
Note that the closed sets of a topology form a Moore collection, so a topology is a set, and this remark also applies to many other families of sets (namely, as soon as the whole set is required to be a set of the family, then the associated kind of family has no proper classes: that this condition suffices to impose sethood can be seen in this proof, which relies crucially on uniexr 7755). Note: if, in the above predicate, we substitute 𝒫 𝑋 for 𝐴, then the last ∈ 𝒫 𝑋 could be weakened to ⊆ 𝑋, and then the predicate would be obviously satisfied since ⊢ ∪ 𝒫 𝑋 = 𝑋 (unipw 5425), making 𝒫 𝑋 a Moore collection in this weaker sense, for any class 𝑋, even proper, but the addition of this single case does not add anything interesting. Instead, we have the biconditional bj-discrmoore 37075. (Contributed by BJ, 8-Dec-2021.) |
| ⊢ (∀𝑥 ∈ 𝒫 𝐴(∪ 𝐴 ∩ ∩ 𝑥) ∈ 𝐴 → 𝐴 ∈ V) | ||
| Syntax | cmoore 37067 | Syntax for the class of Moore collections. |
| class Moore | ||
| Definition | df-bj-moore 37068* |
Define the class of Moore collections. This is indeed the class of all
Moore collections since these all are sets, as proved in bj-mooreset 37066,
and as illustrated by the lack of sethood condition in bj-ismoore 37069.
This is to df-mre 17596 (defining Moore) what df-top 22830 (defining Top) is to df-topon 22847 (defining TopOn). For the sake of consistency, the function defined at df-mre 17596 should be denoted by "MooreOn". Note: df-mre 17596 singles out the empty intersection. This is not necessary. It could be written instead ⊢ Moore = (𝑥 ∈ V ↦ {𝑦 ∈ 𝒫 𝒫 𝑥 ∣ ∀𝑧 ∈ 𝒫 𝑦(𝑥 ∩ ∩ 𝑧) ∈ 𝑦}) and the equivalence of both definitions is proved by bj-0int 37065. There is no added generality in defining a "Moore predicate" for arbitrary classes, since a Moore class satisfying such a predicate is automatically a set (see bj-mooreset 37066). TODO: move to the main section. For many families of sets, one can define both the function associating to each set the set of families of that kind on it (like df-mre 17596 and df-topon 22847) or the class of all families of that kind, independent of a base set (like df-bj-moore 37068 or df-top 22830). In general, the former will be more useful and the extra generality of the latter is not necessary. Moore collections, however, are particular in that they are more ubiquitous and are used in a wide variety of applications (for many families of sets, the family of families of a given kind is often a Moore collection, for instance). Therefore, in the case of Moore families, having both definitions is useful. (Contributed by BJ, 27-Apr-2021.) |
| ⊢ Moore = {𝑥 ∣ ∀𝑦 ∈ 𝒫 𝑥(∪ 𝑥 ∩ ∩ 𝑦) ∈ 𝑥} | ||
| Theorem | bj-ismoore 37069* | Characterization of Moore collections. Note that there is no sethood hypothesis on 𝐴: it is implied by either side (this is obvious for the LHS, and is the content of bj-mooreset 37066 for the RHS). (Contributed by BJ, 9-Dec-2021.) |
| ⊢ (𝐴 ∈ Moore ↔ ∀𝑥 ∈ 𝒫 𝐴(∪ 𝐴 ∩ ∩ 𝑥) ∈ 𝐴) | ||
| Theorem | bj-ismoored0 37070 | Necessary condition to be a Moore collection. (Contributed by BJ, 9-Dec-2021.) |
| ⊢ (𝐴 ∈ Moore → ∪ 𝐴 ∈ 𝐴) | ||
| Theorem | bj-ismoored 37071 | Necessary condition to be a Moore collection. (Contributed by BJ, 9-Dec-2021.) |
| ⊢ (𝜑 → 𝐴 ∈ Moore) & ⊢ (𝜑 → 𝐵 ⊆ 𝐴) ⇒ ⊢ (𝜑 → (∪ 𝐴 ∩ ∩ 𝐵) ∈ 𝐴) | ||
| Theorem | bj-ismoored2 37072 | Necessary condition to be a Moore collection. (Contributed by BJ, 9-Dec-2021.) |
| ⊢ (𝜑 → 𝐴 ∈ Moore) & ⊢ (𝜑 → 𝐵 ⊆ 𝐴) & ⊢ (𝜑 → 𝐵 ≠ ∅) ⇒ ⊢ (𝜑 → ∩ 𝐵 ∈ 𝐴) | ||
| Theorem | bj-ismooredr 37073* | Sufficient condition to be a Moore collection. Note that there is no sethood hypothesis on 𝐴: it is a consequence of the only hypothesis. (Contributed by BJ, 9-Dec-2021.) |
| ⊢ ((𝜑 ∧ 𝑥 ⊆ 𝐴) → (∪ 𝐴 ∩ ∩ 𝑥) ∈ 𝐴) ⇒ ⊢ (𝜑 → 𝐴 ∈ Moore) | ||
| Theorem | bj-ismooredr2 37074* | Sufficient condition to be a Moore collection (variant of bj-ismooredr 37073 singling out the empty intersection). Note that there is no sethood hypothesis on 𝐴: it is a consequence of the first hypothesis. (Contributed by BJ, 9-Dec-2021.) |
| ⊢ (𝜑 → ∪ 𝐴 ∈ 𝐴) & ⊢ ((𝜑 ∧ (𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅)) → ∩ 𝑥 ∈ 𝐴) ⇒ ⊢ (𝜑 → 𝐴 ∈ Moore) | ||
| Theorem | bj-discrmoore 37075 | The powerclass 𝒫 𝐴 is a Moore collection if and only if 𝐴 is a set. It is then called the discrete Moore collection. (Contributed by BJ, 9-Dec-2021.) |
| ⊢ (𝐴 ∈ V ↔ 𝒫 𝐴 ∈ Moore) | ||
| Theorem | bj-0nmoore 37076 | The empty set is not a Moore collection. (Contributed by BJ, 9-Dec-2021.) |
| ⊢ ¬ ∅ ∈ Moore | ||
| Theorem | bj-snmoore 37077 | A singleton is a Moore collection. See bj-snmooreb 37078 for a biconditional version. (Contributed by BJ, 10-Apr-2024.) |
| ⊢ (𝐴 ∈ 𝑉 → {𝐴} ∈ Moore) | ||
| Theorem | bj-snmooreb 37078 | A singleton is a Moore collection, biconditional version. (Contributed by BJ, 9-Dec-2021.) (Proof shortened by BJ, 10-Apr-2024.) |
| ⊢ (𝐴 ∈ V ↔ {𝐴} ∈ Moore) | ||
| Theorem | bj-prmoore 37079 |
A pair formed of two nested sets is a Moore collection. (Note that in
the statement, if 𝐵 is a proper class, we are in the
case of
bj-snmoore 37077). A direct consequence is ⊢ {∅, 𝐴} ∈ Moore.
More generally, any nonempty well-ordered chain of sets that is a set is a Moore collection. We also have the biconditional ⊢ ((𝐴 ∩ 𝐵) ∈ 𝑉 → ({𝐴, 𝐵} ∈ Moore ↔ (𝐴 ⊆ 𝐵 ∨ 𝐵 ⊆ 𝐴))). (Contributed by BJ, 11-Apr-2024.) |
| ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐴 ⊆ 𝐵) → {𝐴, 𝐵} ∈ Moore) | ||
| Theorem | bj-0nelmpt 37080 | The empty set is not an element of a function (given in maps-to notation). (Contributed by BJ, 30-Dec-2020.) |
| ⊢ ¬ ∅ ∈ (𝑥 ∈ 𝐴 ↦ 𝐵) | ||
| Theorem | bj-mptval 37081 | Value of a function given in maps-to notation. (Contributed by BJ, 30-Dec-2020.) |
| ⊢ Ⅎ𝑥𝐴 ⇒ ⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ 𝑉 → (𝑋 ∈ 𝐴 → (((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑋) = 𝑌 ↔ 𝑋(𝑥 ∈ 𝐴 ↦ 𝐵)𝑌))) | ||
| Theorem | bj-dfmpoa 37082* | An equivalent definition of df-mpo 7408. (Contributed by BJ, 30-Dec-2020.) |
| ⊢ (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) = {〈𝑠, 𝑡〉 ∣ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 (𝑠 = 〈𝑥, 𝑦〉 ∧ 𝑡 = 𝐶)} | ||
| Theorem | bj-mpomptALT 37083* | Alternate proof of mpompt 7519. (Contributed by BJ, 30-Dec-2020.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ (𝑧 = 〈𝑥, 𝑦〉 → 𝐶 = 𝐷) ⇒ ⊢ (𝑧 ∈ (𝐴 × 𝐵) ↦ 𝐶) = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐷) | ||
| Syntax | cmpt3 37084 | Syntax for maps-to notation for functions with three arguments. |
| class (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵, 𝑧 ∈ 𝐶 ↦ 𝐷) | ||
| Definition | df-bj-mpt3 37085* | Define maps-to notation for functions with three arguments. See df-mpt 5202 and df-mpo 7408 for functions with one and two arguments respectively. This definition is analogous to bj-dfmpoa 37082. (Contributed by BJ, 11-Apr-2020.) |
| ⊢ (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵, 𝑧 ∈ 𝐶 ↦ 𝐷) = {〈𝑠, 𝑡〉 ∣ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 ∃𝑧 ∈ 𝐶 (𝑠 = 〈𝑥, 𝑦, 𝑧〉 ∧ 𝑡 = 𝐷)} | ||
Currying and uncurrying. See also df-cur 8264 and df-unc 8265. Contrary to these, the definitions in this section are parameterized. | ||
| Syntax | csethom 37086 | Syntax for the set of set morphisms. |
| class Set⟶ | ||
| Definition | df-bj-sethom 37087* |
Define the set of functions (morphisms of sets) between two sets. Same
as df-map 8840 with arguments swapped. TODO: prove the same
staple lemmas
as for ↑m.
Remark: one may define Set⟶ = (𝑥 ∈ dom Struct , 𝑦 ∈ dom Struct ↦ {𝑓 ∣ 𝑓:(Base‘𝑥)⟶(Base‘𝑦)}) so that for morphisms between other structures, one could write ... = {𝑓 ∈ (𝑥 Set⟶ 𝑦) ∣ ...}. (Contributed by BJ, 11-Apr-2020.) |
| ⊢ Set⟶ = (𝑥 ∈ V, 𝑦 ∈ V ↦ {𝑓 ∣ 𝑓:𝑥⟶𝑦}) | ||
| Syntax | ctophom 37088 | Syntax for the set of topological morphisms. |
| class Top⟶ | ||
| Definition | df-bj-tophom 37089* | Define the set of continuous functions (morphisms of topological spaces) between two topological spaces. Similar to df-cn 23163 (which is in terms of topologies instead of topological spaces). (Contributed by BJ, 10-Feb-2022.) |
| ⊢ Top⟶ = (𝑥 ∈ TopSp, 𝑦 ∈ TopSp ↦ {𝑓 ∈ ((Base‘𝑥) Set⟶ (Base‘𝑦)) ∣ ∀𝑢 ∈ (TopOpen‘𝑦)(◡𝑓 “ 𝑢) ∈ (TopOpen‘𝑥)}) | ||
| Syntax | cmgmhom 37090 | Syntax for the set of magma morphisms. |
| class Mgm⟶ | ||
| Definition | df-bj-mgmhom 37091* | Define the set of magma morphisms between two magmas. If domain and codomain are semigroups, monoids, or groups, then one obtains the set of morphisms of these structures. (Contributed by BJ, 10-Feb-2022.) |
| ⊢ Mgm⟶ = (𝑥 ∈ Mgm, 𝑦 ∈ Mgm ↦ {𝑓 ∈ ((Base‘𝑥) Set⟶ (Base‘𝑦)) ∣ ∀𝑢 ∈ (Base‘𝑥)∀𝑣 ∈ (Base‘𝑥)(𝑓‘(𝑢(+g‘𝑥)𝑣)) = ((𝑓‘𝑢)(+g‘𝑦)(𝑓‘𝑣))}) | ||
| Syntax | ctopmgmhom 37092 | Syntax for the set of topological magma morphisms. |
| class TopMgm⟶ | ||
| Definition | df-bj-topmgmhom 37093* | Define the set of topological magma morphisms (continuous magma morphisms) between two topological magmas. If domain and codomain are topological semigroups, monoids, or groups, then one obtains the set of morphisms of these structures. This definition is currently stated with topological monoid domain and codomain, since topological magmas are currently not defined in set.mm. (Contributed by BJ, 10-Feb-2022.) |
| ⊢ TopMgm⟶ = (𝑥 ∈ TopMnd, 𝑦 ∈ TopMnd ↦ ((𝑥 Top⟶ 𝑦) ∩ (𝑥 Mgm⟶ 𝑦))) | ||
| Syntax | ccur- 37094 | Syntax for the parameterized currying function. |
| class curry_ | ||
| Definition | df-bj-cur 37095* | Define currying. See also df-cur 8264. (Contributed by BJ, 11-Apr-2020.) |
| ⊢ curry_ = (𝑥 ∈ V, 𝑦 ∈ V, 𝑧 ∈ V ↦ (𝑓 ∈ ((𝑥 × 𝑦) Set⟶ 𝑧) ↦ (𝑎 ∈ 𝑥 ↦ (𝑏 ∈ 𝑦 ↦ (𝑓‘〈𝑎, 𝑏〉))))) | ||
| Syntax | cunc- 37096 | Notation for the parameterized uncurrying function. |
| class uncurry_ | ||
| Definition | df-bj-unc 37097* | Define uncurrying. See also df-unc 8265. (Contributed by BJ, 11-Apr-2020.) |
| ⊢ uncurry_ = (𝑥 ∈ V, 𝑦 ∈ V, 𝑧 ∈ V ↦ (𝑓 ∈ (𝑥 Set⟶ (𝑦 Set⟶ 𝑧)) ↦ (𝑎 ∈ 𝑥, 𝑏 ∈ 𝑦 ↦ ((𝑓‘𝑎)‘𝑏)))) | ||
Groundwork for changing the definition, syntax and token for component-setting in extensible structures. See https://github.com/metamath/set.mm/issues/2401 | ||
| Syntax | cstrset 37098 | Syntax for component-setting in extensible structures. |
| class [𝐵 / 𝐴]struct𝑆 | ||
| Definition | df-strset 37099 | Component-setting in extensible structures. Define the extensible structure [𝐵 / 𝐴]struct𝑆, which is like the extensible structure 𝑆 except that the value 𝐵 has been put in the slot 𝐴 (replacing the current value if there was already one). In such expressions, 𝐴 is generally substituted for slot mnemonics like Base or +g or dist. The V in this definition was chosen to be closer to df-sets 17181, but since extensible structures are functions on ℕ, it will be more natural to replace it with ℕ when df-strset 37099 becomes the main definition. (Contributed by BJ, 13-Feb-2022.) |
| ⊢ [𝐵 / 𝐴]struct𝑆 = ((𝑆 ↾ (V ∖ {(𝐴‘ndx)})) ∪ {〈(𝐴‘ndx), 𝐵〉}) | ||
| Theorem | setsstrset 37100 | Relation between df-sets 17181 and df-strset 37099. Temporary theorem kept during the transition from the former to the latter. (Contributed by BJ, 13-Feb-2022.) |
| ⊢ ((𝑆 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → [𝐵 / 𝐴]struct𝑆 = (𝑆 sSet 〈(𝐴‘ndx), 𝐵〉)) | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |