| Metamath
Proof Explorer Theorem List (p. 371 of 499) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30893) |
(30894-32416) |
(32417-49836) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | bj-elsngl 37001* | Characterization of the elements of the singletonization of a class. (Contributed by BJ, 6-Oct-2018.) |
| ⊢ (𝐴 ∈ sngl 𝐵 ↔ ∃𝑥 ∈ 𝐵 𝐴 = {𝑥}) | ||
| Theorem | bj-snglc 37002 | Characterization of the elements of 𝐴 in terms of elements of its singletonization. (Contributed by BJ, 6-Oct-2018.) |
| ⊢ (𝐴 ∈ 𝐵 ↔ {𝐴} ∈ sngl 𝐵) | ||
| Theorem | bj-snglss 37003 | The singletonization of a class is included in its powerclass. (Contributed by BJ, 6-Oct-2018.) |
| ⊢ sngl 𝐴 ⊆ 𝒫 𝐴 | ||
| Theorem | bj-0nelsngl 37004 | The empty set is not a member of a singletonization (neither is any nonsingleton, in particular any von Neuman ordinal except possibly df-1o 8385). (Contributed by BJ, 6-Oct-2018.) |
| ⊢ ∅ ∉ sngl 𝐴 | ||
| Theorem | bj-snglinv 37005* | Inverse of singletonization. (Contributed by BJ, 6-Oct-2018.) |
| ⊢ 𝐴 = {𝑥 ∣ {𝑥} ∈ sngl 𝐴} | ||
| Theorem | bj-snglex 37006 | A class is a set if and only if its singletonization is a set. (Contributed by BJ, 6-Oct-2018.) |
| ⊢ (𝐴 ∈ V ↔ sngl 𝐴 ∈ V) | ||
| Syntax | bj-ctag 37007 | Syntax for the tagged copy of a class. (Contributed by BJ, 6-Oct-2018.) |
| class tag 𝐴 | ||
| Definition | df-bj-tag 37008 | Definition of the tagged copy of a class, that is, the adjunction to (an isomorph of) 𝐴 of a disjoint element (here, the empty set). Remark: this could be used for the one-point compactification of a topological space. (Contributed by BJ, 6-Oct-2018.) |
| ⊢ tag 𝐴 = (sngl 𝐴 ∪ {∅}) | ||
| Theorem | bj-tageq 37009 | Substitution property for tag. (Contributed by BJ, 6-Oct-2018.) |
| ⊢ (𝐴 = 𝐵 → tag 𝐴 = tag 𝐵) | ||
| Theorem | bj-eltag 37010* | Characterization of the elements of the tagging of a class. (Contributed by BJ, 6-Oct-2018.) |
| ⊢ (𝐴 ∈ tag 𝐵 ↔ (∃𝑥 ∈ 𝐵 𝐴 = {𝑥} ∨ 𝐴 = ∅)) | ||
| Theorem | bj-0eltag 37011 | The empty set belongs to the tagging of a class. (Contributed by BJ, 6-Apr-2019.) |
| ⊢ ∅ ∈ tag 𝐴 | ||
| Theorem | bj-tagn0 37012 | The tagging of a class is nonempty. (Contributed by BJ, 6-Apr-2019.) |
| ⊢ tag 𝐴 ≠ ∅ | ||
| Theorem | bj-tagss 37013 | The tagging of a class is included in its powerclass. (Contributed by BJ, 6-Oct-2018.) |
| ⊢ tag 𝐴 ⊆ 𝒫 𝐴 | ||
| Theorem | bj-snglsstag 37014 | The singletonization is included in the tagging. (Contributed by BJ, 6-Oct-2018.) |
| ⊢ sngl 𝐴 ⊆ tag 𝐴 | ||
| Theorem | bj-sngltagi 37015 | The singletonization is included in the tagging. (Contributed by BJ, 6-Oct-2018.) |
| ⊢ (𝐴 ∈ sngl 𝐵 → 𝐴 ∈ tag 𝐵) | ||
| Theorem | bj-sngltag 37016 | The singletonization and the tagging of a set contain the same singletons. (Contributed by BJ, 6-Oct-2018.) |
| ⊢ (𝐴 ∈ 𝑉 → ({𝐴} ∈ sngl 𝐵 ↔ {𝐴} ∈ tag 𝐵)) | ||
| Theorem | bj-tagci 37017 | Characterization of the elements of 𝐵 in terms of elements of its tagged version. (Contributed by BJ, 6-Oct-2018.) |
| ⊢ (𝐴 ∈ 𝐵 → {𝐴} ∈ tag 𝐵) | ||
| Theorem | bj-tagcg 37018 | Characterization of the elements of 𝐵 in terms of elements of its tagged version. (Contributed by BJ, 6-Oct-2018.) |
| ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ 𝐵 ↔ {𝐴} ∈ tag 𝐵)) | ||
| Theorem | bj-taginv 37019* | Inverse of tagging. (Contributed by BJ, 6-Oct-2018.) |
| ⊢ 𝐴 = {𝑥 ∣ {𝑥} ∈ tag 𝐴} | ||
| Theorem | bj-tagex 37020 | A class is a set if and only if its tagging is a set. (Contributed by BJ, 6-Oct-2018.) |
| ⊢ (𝐴 ∈ V ↔ tag 𝐴 ∈ V) | ||
| Theorem | bj-xtageq 37021 | The products of a given class and the tagging of either of two equal classes are equal. (Contributed by BJ, 6-Apr-2019.) |
| ⊢ (𝐴 = 𝐵 → (𝐶 × tag 𝐴) = (𝐶 × tag 𝐵)) | ||
| Theorem | bj-xtagex 37022 | The product of a set and the tagging of a set is a set. (Contributed by BJ, 2-Apr-2019.) |
| ⊢ (𝐴 ∈ 𝑉 → (𝐵 ∈ 𝑊 → (𝐴 × tag 𝐵) ∈ V)) | ||
This subsection gives a definition of an ordered pair, or couple (2-tuple), that "works" for proper classes, as evidenced by Theorems bj-2uplth 37054 and bj-2uplex 37055, and more importantly, bj-pr21val 37046 and bj-pr22val 37052. In particular, one can define well-behaved tuples of classes. Classes in ZF(C) are only virtual, and in particular they cannot be quantified over. Theorem bj-2uplex 37055 has advantages: in view of df-br 5092, several sethood antecedents could be removed from existing theorems. For instance, relsnopg 5743 (resp. relsnop 5745) would hold without antecedents (resp. hypotheses) thanks to relsnb 5742). Also, the antecedent Rel 𝑅 could be removed from brrelex12 5668 and related theorems brrelex*, and, as a consequence, of multiple later theorems. Similarly, df-struct 17055 could be simplified by removing the exception currently made for the empty set. The projections are denoted by pr1 and pr2 and the couple with projections (or coordinates) 𝐴 and 𝐵 is denoted by ⦅𝐴, 𝐵⦆. Note that this definition uses the Kuratowski definition (df-op 4583) as a preliminary definition, and then "redefines" a couple. It could also use the "short" version of the Kuratowski pair (see opthreg 9508) without needing the axiom of regularity; it could even bypass this definition by "inlining" it. This definition is due to Anthony Morse and is expounded (with idiosyncratic notation) in Anthony P. Morse, A Theory of Sets, Academic Press, 1965 (second edition 1986). Note that this extends in a natural way to tuples. A variation of this definition is justified in opthprc 5680, but here we use "tagged versions" of the factors (see df-bj-tag 37008) so that an m-tuple can equal an n-tuple only when m = n (and the projections are the same). A comparison of the different definitions of tuples (strangely not mentioning Morse's), is given in Dominic McCarty and Dana Scott, Reconsidering ordered pairs, Bull. Symbolic Logic, Volume 14, Issue 3 (Sept. 2008), 379--397. where a recursive definition of tuples is given that avoids the two-step definition of tuples and that can be adapted to various set theories. Finally, another survey is Akihiro Kanamori, The empty set, the singleton, and the ordered pair, Bull. Symbolic Logic, Volume 9, Number 3 (Sept. 2003), 273--298. (available at http://math.bu.edu/people/aki/8.pdf 37008) | ||
| Syntax | bj-cproj 37023 | Syntax for the class projection. (Contributed by BJ, 6-Apr-2019.) |
| class (𝐴 Proj 𝐵) | ||
| Definition | df-bj-proj 37024* | Definition of the class projection corresponding to tagged tuples. The expression (𝐴 Proj 𝐵) denotes the projection on the A^th component. (Contributed by BJ, 6-Apr-2019.) (New usage is discouraged.) |
| ⊢ (𝐴 Proj 𝐵) = {𝑥 ∣ {𝑥} ∈ (𝐵 “ {𝐴})} | ||
| Theorem | bj-projeq 37025 | Substitution property for Proj. (Contributed by BJ, 6-Apr-2019.) |
| ⊢ (𝐴 = 𝐶 → (𝐵 = 𝐷 → (𝐴 Proj 𝐵) = (𝐶 Proj 𝐷))) | ||
| Theorem | bj-projeq2 37026 | Substitution property for Proj. (Contributed by BJ, 6-Apr-2019.) |
| ⊢ (𝐵 = 𝐶 → (𝐴 Proj 𝐵) = (𝐴 Proj 𝐶)) | ||
| Theorem | bj-projun 37027 | The class projection on a given component preserves unions. (Contributed by BJ, 6-Apr-2019.) |
| ⊢ (𝐴 Proj (𝐵 ∪ 𝐶)) = ((𝐴 Proj 𝐵) ∪ (𝐴 Proj 𝐶)) | ||
| Theorem | bj-projex 37028 | Sethood of the class projection. (Contributed by BJ, 6-Apr-2019.) |
| ⊢ (𝐵 ∈ 𝑉 → (𝐴 Proj 𝐵) ∈ V) | ||
| Theorem | bj-projval 37029 | Value of the class projection. (Contributed by BJ, 6-Apr-2019.) |
| ⊢ (𝐴 ∈ 𝑉 → (𝐴 Proj ({𝐵} × tag 𝐶)) = if(𝐵 = 𝐴, 𝐶, ∅)) | ||
| Syntax | bj-c1upl 37030 | Syntax for Morse monuple. (Contributed by BJ, 6-Apr-2019.) |
| class ⦅𝐴⦆ | ||
| Definition | df-bj-1upl 37031 | Definition of the Morse monuple (1-tuple). This is not useful per se, but is used as a step towards the definition of couples (2-tuples, or ordered pairs). The reason for "tagging" the set is so that an m-tuple and an n-tuple be equal only when m = n. Note that with this definition, the 0-tuple is the empty set. New usage is discouraged because the precise definition is generally unimportant compared to the characteristic properties bj-2upleq 37045, bj-2uplth 37054, bj-2uplex 37055, and the properties of the projections (see df-bj-pr1 37034 and df-bj-pr2 37048). (Contributed by BJ, 6-Apr-2019.) (New usage is discouraged.) |
| ⊢ ⦅𝐴⦆ = ({∅} × tag 𝐴) | ||
| Theorem | bj-1upleq 37032 | Substitution property for ⦅ − ⦆. (Contributed by BJ, 6-Apr-2019.) |
| ⊢ (𝐴 = 𝐵 → ⦅𝐴⦆ = ⦅𝐵⦆) | ||
| Syntax | bj-cpr1 37033 | Syntax for the first class tuple projection. (Contributed by BJ, 6-Apr-2019.) |
| class pr1 𝐴 | ||
| Definition | df-bj-pr1 37034 | Definition of the first projection of a class tuple. New usage is discouraged because the precise definition is generally unimportant compared to the characteristic properties bj-pr1eq 37035, bj-pr11val 37038, bj-pr21val 37046, bj-pr1ex 37039. (Contributed by BJ, 6-Apr-2019.) (New usage is discouraged.) |
| ⊢ pr1 𝐴 = (∅ Proj 𝐴) | ||
| Theorem | bj-pr1eq 37035 | Substitution property for pr1. (Contributed by BJ, 6-Apr-2019.) |
| ⊢ (𝐴 = 𝐵 → pr1 𝐴 = pr1 𝐵) | ||
| Theorem | bj-pr1un 37036 | The first projection preserves unions. (Contributed by BJ, 6-Apr-2019.) |
| ⊢ pr1 (𝐴 ∪ 𝐵) = (pr1 𝐴 ∪ pr1 𝐵) | ||
| Theorem | bj-pr1val 37037 | Value of the first projection. (Contributed by BJ, 6-Apr-2019.) |
| ⊢ pr1 ({𝐴} × tag 𝐵) = if(𝐴 = ∅, 𝐵, ∅) | ||
| Theorem | bj-pr11val 37038 | Value of the first projection of a monuple. (Contributed by BJ, 6-Apr-2019.) |
| ⊢ pr1 ⦅𝐴⦆ = 𝐴 | ||
| Theorem | bj-pr1ex 37039 | Sethood of the first projection. (Contributed by BJ, 6-Oct-2018.) |
| ⊢ (𝐴 ∈ 𝑉 → pr1 𝐴 ∈ V) | ||
| Theorem | bj-1uplth 37040 | The characteristic property of monuples. Note that this holds without sethood hypotheses. (Contributed by BJ, 6-Apr-2019.) |
| ⊢ (⦅𝐴⦆ = ⦅𝐵⦆ ↔ 𝐴 = 𝐵) | ||
| Theorem | bj-1uplex 37041 | A monuple is a set if and only if its coordinates are sets. (Contributed by BJ, 6-Apr-2019.) |
| ⊢ (⦅𝐴⦆ ∈ V ↔ 𝐴 ∈ V) | ||
| Theorem | bj-1upln0 37042 | A monuple is nonempty. (Contributed by BJ, 6-Apr-2019.) |
| ⊢ ⦅𝐴⦆ ≠ ∅ | ||
| Syntax | bj-c2uple 37043 | Syntax for Morse couple. (Contributed by BJ, 6-Oct-2018.) |
| class ⦅𝐴, 𝐵⦆ | ||
| Definition | df-bj-2upl 37044 | Definition of the Morse couple. See df-bj-1upl 37031. New usage is discouraged because the precise definition is generally unimportant compared to the characteristic properties bj-2upleq 37045, bj-2uplth 37054, bj-2uplex 37055, and the properties of the projections (see df-bj-pr1 37034 and df-bj-pr2 37048). (Contributed by BJ, 6-Oct-2018.) (New usage is discouraged.) |
| ⊢ ⦅𝐴, 𝐵⦆ = (⦅𝐴⦆ ∪ ({1o} × tag 𝐵)) | ||
| Theorem | bj-2upleq 37045 | Substitution property for ⦅ − , − ⦆. (Contributed by BJ, 6-Oct-2018.) |
| ⊢ (𝐴 = 𝐵 → (𝐶 = 𝐷 → ⦅𝐴, 𝐶⦆ = ⦅𝐵, 𝐷⦆)) | ||
| Theorem | bj-pr21val 37046 | Value of the first projection of a couple. (Contributed by BJ, 6-Oct-2018.) |
| ⊢ pr1 ⦅𝐴, 𝐵⦆ = 𝐴 | ||
| Syntax | bj-cpr2 37047 | Syntax for the second class tuple projection. (Contributed by BJ, 6-Oct-2018.) |
| class pr2 𝐴 | ||
| Definition | df-bj-pr2 37048 | Definition of the second projection of a class tuple. New usage is discouraged because the precise definition is generally unimportant compared to the characteristic properties bj-pr2eq 37049, bj-pr22val 37052, bj-pr2ex 37053. (Contributed by BJ, 6-Oct-2018.) (New usage is discouraged.) |
| ⊢ pr2 𝐴 = (1o Proj 𝐴) | ||
| Theorem | bj-pr2eq 37049 | Substitution property for pr2. (Contributed by BJ, 6-Oct-2018.) |
| ⊢ (𝐴 = 𝐵 → pr2 𝐴 = pr2 𝐵) | ||
| Theorem | bj-pr2un 37050 | The second projection preserves unions. (Contributed by BJ, 6-Apr-2019.) |
| ⊢ pr2 (𝐴 ∪ 𝐵) = (pr2 𝐴 ∪ pr2 𝐵) | ||
| Theorem | bj-pr2val 37051 | Value of the second projection. (Contributed by BJ, 6-Apr-2019.) |
| ⊢ pr2 ({𝐴} × tag 𝐵) = if(𝐴 = 1o, 𝐵, ∅) | ||
| Theorem | bj-pr22val 37052 | Value of the second projection of a couple. (Contributed by BJ, 6-Oct-2018.) |
| ⊢ pr2 ⦅𝐴, 𝐵⦆ = 𝐵 | ||
| Theorem | bj-pr2ex 37053 | Sethood of the second projection. (Contributed by BJ, 6-Oct-2018.) |
| ⊢ (𝐴 ∈ 𝑉 → pr2 𝐴 ∈ V) | ||
| Theorem | bj-2uplth 37054 | The characteristic property of couples. Note that this holds without sethood hypotheses (compare opth 5416). (Contributed by BJ, 6-Oct-2018.) |
| ⊢ (⦅𝐴, 𝐵⦆ = ⦅𝐶, 𝐷⦆ ↔ (𝐴 = 𝐶 ∧ 𝐵 = 𝐷)) | ||
| Theorem | bj-2uplex 37055 | A couple is a set if and only if its coordinates are sets. For the advantages offered by the reverse closure property, see the section head comment. (Contributed by BJ, 6-Oct-2018.) |
| ⊢ (⦅𝐴, 𝐵⦆ ∈ V ↔ (𝐴 ∈ V ∧ 𝐵 ∈ V)) | ||
| Theorem | bj-2upln0 37056 | A couple is nonempty. (Contributed by BJ, 21-Apr-2019.) |
| ⊢ ⦅𝐴, 𝐵⦆ ≠ ∅ | ||
| Theorem | bj-2upln1upl 37057 | A couple is never equal to a monuple. It is in order to have this "non-clashing" result that tagging was used. Without tagging, we would have ⦅𝐴, ∅⦆ = ⦅𝐴⦆. Note that in the context of Morse tuples, it is natural to define the 0-tuple as the empty set. Therefore, the present theorem together with bj-1upln0 37042 and bj-2upln0 37056 tell us that an m-tuple may equal an n-tuple only when m = n, at least for m, n <= 2, but this result would extend as soon as we define n-tuples for higher values of n. (Contributed by BJ, 21-Apr-2019.) |
| ⊢ ⦅𝐴, 𝐵⦆ ≠ ⦅𝐶⦆ | ||
Some elementary set-theoretic operations "relative to a universe" (by which is merely meant some given class considered as a universe). | ||
| Theorem | bj-rcleqf 37058 | Relative version of cleqf 2923. (Contributed by BJ, 27-Dec-2023.) |
| ⊢ Ⅎ𝑥𝐴 & ⊢ Ⅎ𝑥𝐵 & ⊢ Ⅎ𝑥𝑉 ⇒ ⊢ ((𝑉 ∩ 𝐴) = (𝑉 ∩ 𝐵) ↔ ∀𝑥 ∈ 𝑉 (𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵)) | ||
| Theorem | bj-rcleq 37059* | Relative version of dfcleq 2724. (Contributed by BJ, 27-Dec-2023.) |
| ⊢ ((𝑉 ∩ 𝐴) = (𝑉 ∩ 𝐵) ↔ ∀𝑥 ∈ 𝑉 (𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵)) | ||
| Theorem | bj-reabeq 37060* | Relative form of eqabb 2870. (Contributed by BJ, 27-Dec-2023.) |
| ⊢ ((𝑉 ∩ 𝐴) = {𝑥 ∈ 𝑉 ∣ 𝜑} ↔ ∀𝑥 ∈ 𝑉 (𝑥 ∈ 𝐴 ↔ 𝜑)) | ||
| Theorem | bj-disj2r 37061 | Relative version of ssdifin0 4436, allowing a biconditional, and of disj2 4408. (Contributed by BJ, 11-Nov-2021.) This proof does not rely, even indirectly, on ssdifin0 4436 nor disj2 4408. (Proof modification is discouraged.) |
| ⊢ ((𝐴 ∩ 𝑉) ⊆ (𝑉 ∖ 𝐵) ↔ ((𝐴 ∩ 𝐵) ∩ 𝑉) = ∅) | ||
| Theorem | bj-sscon 37062 | Contraposition law for relative subclasses. Relative and generalized version of ssconb 4092, which it can shorten, as well as conss2 44474. (Contributed by BJ, 11-Nov-2021.) This proof does not rely, even indirectly, on ssconb 4092 nor conss2 44474. (Proof modification is discouraged.) |
| ⊢ ((𝐴 ∩ 𝑉) ⊆ (𝑉 ∖ 𝐵) ↔ (𝐵 ∩ 𝑉) ⊆ (𝑉 ∖ 𝐴)) | ||
In this section, we introduce the axiom of singleton ax-bj-sn 37066 and the axiom of binary union ax-bj-bun 37070. Both axioms are implied by the standard axioms of unordered pair ax-pr 5370 and of union ax-un 7668 (see snex 5374 and unex 7677). Conversely, the axiom of unordered pair ax-pr 5370 is implied by the axioms of singleton and of binary union, as proved in bj-prexg 37072 and bj-prex 37073. The axioms of union ax-un 7668 and of powerset ax-pow 5303 are independent of these axioms: consider respectively the class of pseudo-hereditarily sets of cardinality less than a given singular strong limit cardinal, see Greg Oman, On the axiom of union, Arch. Math. Logic (2010) 49:283--289 (that model does have finite unions), and the class of well-founded hereditarily countable sets (or hereditarily less than a given uncountable regular cardinal). See also https://mathoverflow.net/questions/81815 5303 and https://mathoverflow.net/questions/48365 5303. A proof by finite induction shows that the existence of finite unions is equivalent to the existence of binary unions and of nullary unions (the latter being the axiom of the empty set ax-nul 5244). The axiom of binary union is useful in theories without the axioms of union ax-un 7668 and of powerset ax-pow 5303. For instance, the class of well-founded sets hereditarily of cardinality at most 𝑛 ∈ ℕ0 with ordinary membership relation is a model of { ax-ext 2703, ax-rep 5217, ax-sep 5234, ax-nul 5244, ax-reg 9478 } and the axioms of existence of unordered 𝑚-tuples for all 𝑚 ≤ 𝑛, and in most cases one would like to rule out such models, hence the need for extra axioms, typically variants of powersets or unions. The axiom of adjunction ax-bj-adj 37075 is more widely used, and is an axiom of General Set Theory. We prove how to retrieve it from binary union and singleton in bj-adjfrombun 37079 and conversely how to prove from adjunction singleton (bj-snfromadj 37077) and unordered pair (bj-prfromadj 37078). | ||
| Theorem | bj-abex 37063* | Two ways of stating that the extension of a formula is a set. (Contributed by BJ, 18-Jan-2025.) (Proof modification is discouraged.) |
| ⊢ ({𝑥 ∣ 𝜑} ∈ V ↔ ∃𝑦∀𝑥(𝑥 ∈ 𝑦 ↔ 𝜑)) | ||
| Theorem | bj-clex 37064* | Two ways of stating that a class is a set. (Contributed by BJ, 18-Jan-2025.) (Proof modification is discouraged.) |
| ⊢ (𝑥 ∈ 𝐴 ↔ 𝜑) ⇒ ⊢ (𝐴 ∈ V ↔ ∃𝑦∀𝑥(𝑥 ∈ 𝑦 ↔ 𝜑)) | ||
| Theorem | bj-axsn 37065* | Two ways of stating the axiom of singleton (which is the universal closure of either side, see ax-bj-sn 37066). (Contributed by BJ, 12-Jan-2025.) (Proof modification is discouraged.) |
| ⊢ ({𝑥} ∈ V ↔ ∃𝑦∀𝑧(𝑧 ∈ 𝑦 ↔ 𝑧 = 𝑥)) | ||
| Axiom | ax-bj-sn 37066* | Axiom of singleton. (Contributed by BJ, 12-Jan-2025.) |
| ⊢ ∀𝑥∃𝑦∀𝑧(𝑧 ∈ 𝑦 ↔ 𝑧 = 𝑥) | ||
| Theorem | bj-snexg 37067 | A singleton built on a set is a set. Contrary to bj-snex 37068, this proof is intuitionistically valid and does not require ax-nul 5244. (Contributed by NM, 7-Aug-1994.) Extract it from snex 5374 and prove it from ax-bj-sn 37066. (Revised by BJ, 12-Jan-2025.) (Proof modification is discouraged.) |
| ⊢ (𝐴 ∈ 𝑉 → {𝐴} ∈ V) | ||
| Theorem | bj-snex 37068 | A singleton is a set. See also snex 5374, snexALT 5321. (Contributed by NM, 7-Aug-1994.) Prove it from ax-bj-sn 37066. (Revised by BJ, 12-Jan-2025.) (Proof modification is discouraged.) |
| ⊢ {𝐴} ∈ V | ||
| Theorem | bj-axbun 37069* | Two ways of stating the axiom of binary union (which is the universal closure of either side, see ax-bj-bun 37070). (Contributed by BJ, 12-Jan-2025.) (Proof modification is discouraged.) |
| ⊢ ((𝑥 ∪ 𝑦) ∈ V ↔ ∃𝑧∀𝑡(𝑡 ∈ 𝑧 ↔ (𝑡 ∈ 𝑥 ∨ 𝑡 ∈ 𝑦))) | ||
| Axiom | ax-bj-bun 37070* | Axiom of binary union. (Contributed by BJ, 12-Jan-2025.) |
| ⊢ ∀𝑥∀𝑦∃𝑧∀𝑡(𝑡 ∈ 𝑧 ↔ (𝑡 ∈ 𝑥 ∨ 𝑡 ∈ 𝑦)) | ||
| Theorem | bj-unexg 37071 | Existence of binary unions of sets, proved from ax-bj-bun 37070. (Contributed by BJ, 12-Jan-2025.) (Proof modification is discouraged.) |
| ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 ∪ 𝐵) ∈ V) | ||
| Theorem | bj-prexg 37072 | Existence of unordered pairs formed on sets, proved from ax-bj-sn 37066 and ax-bj-bun 37070. Contrary to bj-prex 37073, this proof is intuitionistically valid and does not require ax-nul 5244. (Contributed by BJ, 12-Jan-2025.) (Proof modification is discouraged.) |
| ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → {𝐴, 𝐵} ∈ V) | ||
| Theorem | bj-prex 37073 | Existence of unordered pairs proved from ax-bj-sn 37066 and ax-bj-bun 37070. (Contributed by BJ, 12-Jan-2025.) (Proof modification is discouraged.) |
| ⊢ {𝐴, 𝐵} ∈ V | ||
| Theorem | bj-axadj 37074* | Two ways of stating the axiom of adjunction (which is the universal closure of either side, see ax-bj-adj 37075). (Contributed by BJ, 12-Jan-2025.) (Proof modification is discouraged.) |
| ⊢ ((𝑥 ∪ {𝑦}) ∈ V ↔ ∃𝑧∀𝑡(𝑡 ∈ 𝑧 ↔ (𝑡 ∈ 𝑥 ∨ 𝑡 = 𝑦))) | ||
| Axiom | ax-bj-adj 37075* | Axiom of adjunction. (Contributed by BJ, 19-Jan-2025.) |
| ⊢ ∀𝑥∀𝑦∃𝑧∀𝑡(𝑡 ∈ 𝑧 ↔ (𝑡 ∈ 𝑥 ∨ 𝑡 = 𝑦)) | ||
| Theorem | bj-adjg1 37076 | Existence of the result of the adjunction (generalized only in the first term since this suffices for current applications). (Contributed by BJ, 19-Jan-2025.) (Proof modification is discouraged.) |
| ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∪ {𝑥}) ∈ V) | ||
| Theorem | bj-snfromadj 37077 | Singleton from adjunction and empty set. (Contributed by BJ, 19-Jan-2025.) (Proof modification is discouraged.) |
| ⊢ {𝑥} ∈ V | ||
| Theorem | bj-prfromadj 37078 | Unordered pair from adjunction. (Contributed by BJ, 19-Jan-2025.) (Proof modification is discouraged.) |
| ⊢ {𝑥, 𝑦} ∈ V | ||
| Theorem | bj-adjfrombun 37079 | Adjunction from singleton and binary union. (Contributed by BJ, 19-Jan-2025.) (Proof modification is discouraged.) |
| ⊢ (𝑥 ∪ {𝑦}) ∈ V | ||
Miscellaneous theorems of set theory. | ||
| Theorem | eleq2w2ALT 37080 | Alternate proof of eleq2w2 2727 and special instance of eleq2 2820. (Contributed by BJ, 22-Sep-2024.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ (𝐴 = 𝐵 → (𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵)) | ||
| Theorem | bj-clel3gALT 37081* | Alternate proof of clel3g 3616. (Contributed by BJ, 1-Sep-2024.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ (𝐵 ∈ 𝑉 → (𝐴 ∈ 𝐵 ↔ ∃𝑥(𝑥 = 𝐵 ∧ 𝐴 ∈ 𝑥))) | ||
| Theorem | bj-pw0ALT 37082 | Alternate proof of pw0 4764. The proofs have a similar structure: pw0 4764 uses the definitions of powerclass and singleton as class abstractions, whereas bj-pw0ALT 37082 uses characterizations of their elements. Both proofs then use transitivity of a congruence relation (equality for pw0 4764 and biconditional for bj-pw0ALT 37082) to translate the property ss0b 4351 into the wanted result. To translate a biconditional into a class equality, pw0 4764 uses abbii 2798 (which yields an equality of class abstractions), while bj-pw0ALT 37082 uses eqriv 2728 (which requires a biconditional of membership of a given setvar variable). Note that abbii 2798, through its closed form abbi 2796, is proved from eqrdv 2729, which is the deduction form of eqriv 2728. In the other direction, velpw 4555 and velsn 4592 are proved from the definitions of powerclass and singleton using elabg 3632, which is a version of abbii 2798 suited for membership characterizations. (Contributed by BJ, 14-Apr-2024.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ 𝒫 ∅ = {∅} | ||
| Theorem | bj-sselpwuni 37083 | Quantitative version of ssexg 5261: a subset of an element of a class is an element of the powerclass of the union of that class. (Contributed by BJ, 6-Apr-2024.) |
| ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ∈ 𝑉) → 𝐴 ∈ 𝒫 ∪ 𝑉) | ||
| Theorem | bj-unirel 37084 | Quantitative version of uniexr 7696: if the union of a class is an element of a class, then that class is an element of the double powerclass of the union of this class. (Contributed by BJ, 6-Apr-2024.) |
| ⊢ (∪ 𝐴 ∈ 𝑉 → 𝐴 ∈ 𝒫 𝒫 ∪ 𝑉) | ||
| Theorem | bj-elpwg 37085 | If the intersection of two classes is a set, then inclusion among these classes is equivalent to membership in the powerclass. Common generalization of elpwg 4553 and elpw2g 5271 (the latter of which could be proved from it). (Contributed by BJ, 31-Dec-2023.) |
| ⊢ ((𝐴 ∩ 𝐵) ∈ 𝑉 → (𝐴 ∈ 𝒫 𝐵 ↔ 𝐴 ⊆ 𝐵)) | ||
| Theorem | bj-velpwALT 37086* | This theorem bj-velpwALT 37086 and the next theorem bj-elpwgALT 37087 are alternate proofs of velpw 4555 and elpwg 4553 respectively, where one proves first the setvar case and then generalizes using vtoclbg 3512 instead of proving first the general case using elab2g 3636 and then specifying. Here, this results in needing an extra DV condition, a longer combined proof and use of ax-12 2180. In other cases, that order is better (e.g., vsnex 5372 proved before snexg 5373). (Contributed by BJ, 17-Jan-2025.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ (𝑥 ∈ 𝒫 𝐴 ↔ 𝑥 ⊆ 𝐴) | ||
| Theorem | bj-elpwgALT 37087 | Alternate proof of elpwg 4553. See comment for bj-velpwALT 37086. (Contributed by BJ, 17-Jan-2025.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ 𝒫 𝐵 ↔ 𝐴 ⊆ 𝐵)) | ||
| Theorem | bj-vjust 37088 | Justification theorem for dfv2 3439 if it were the definition. See also vjust 3437. (Contributed by BJ, 30-Nov-2019.) (Proof modification is discouraged.) |
| ⊢ {𝑥 ∣ ⊤} = {𝑦 ∣ ⊤} | ||
| Theorem | bj-nul 37089* | Two formulations of the axiom of the empty set ax-nul 5244. Proposal: place it right before ax-nul 5244. (Contributed by BJ, 30-Nov-2019.) (Proof modification is discouraged.) |
| ⊢ (∅ ∈ V ↔ ∃𝑥∀𝑦 ¬ 𝑦 ∈ 𝑥) | ||
| Theorem | bj-nuliota 37090* | Definition of the empty set using the definite description binder. See also bj-nuliotaALT 37091. (Contributed by BJ, 30-Nov-2019.) (Proof modification is discouraged.) |
| ⊢ ∅ = (℩𝑥∀𝑦 ¬ 𝑦 ∈ 𝑥) | ||
| Theorem | bj-nuliotaALT 37091* | Alternate proof of bj-nuliota 37090. Note that this alternate proof uses the fact that ℩𝑥𝜑 evaluates to ∅ when there is no 𝑥 satisfying 𝜑 (iotanul 6461). This is an implementation detail of the encoding currently used in set.mm and should be avoided. (Contributed by BJ, 30-Nov-2019.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ ∅ = (℩𝑥∀𝑦 ¬ 𝑦 ∈ 𝑥) | ||
| Theorem | bj-vtoclgfALT 37092 | Alternate proof of vtoclgf 3524. Proof from vtoclgft 3507. (This may have been the original proof before shortening.) (Contributed by BJ, 30-Sep-2019.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ Ⅎ𝑥𝐴 & ⊢ Ⅎ𝑥𝜓 & ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) & ⊢ 𝜑 ⇒ ⊢ (𝐴 ∈ 𝑉 → 𝜓) | ||
| Theorem | bj-elsn12g 37093 | Join of elsng 4590 and elsn2g 4617. (Contributed by BJ, 18-Nov-2023.) |
| ⊢ ((𝐴 ∈ 𝑉 ∨ 𝐵 ∈ 𝑊) → (𝐴 ∈ {𝐵} ↔ 𝐴 = 𝐵)) | ||
| Theorem | bj-elsnb 37094 | Biconditional version of elsng 4590. (Contributed by BJ, 18-Nov-2023.) |
| ⊢ (𝐴 ∈ {𝐵} ↔ (𝐴 ∈ V ∧ 𝐴 = 𝐵)) | ||
| Theorem | bj-pwcfsdom 37095 | Remove hypothesis from pwcfsdom 10471. Illustration of how to remove a "proof-facilitating hypothesis". (Can use it to shorten theorems using pwcfsdom 10471.) (Contributed by BJ, 14-Sep-2019.) |
| ⊢ (ℵ‘𝐴) ≺ ((ℵ‘𝐴) ↑m (cf‘(ℵ‘𝐴))) | ||
| Theorem | bj-grur1 37096 | Remove hypothesis from grur1 10708. Illustration of how to remove a "definitional hypothesis". This makes its uses longer, but the theorem feels more self-contained. It looks preferable when the defined term appears only once in the conclusion. (Contributed by BJ, 14-Sep-2019.) |
| ⊢ ((𝑈 ∈ Univ ∧ 𝑈 ∈ ∪ (𝑅1 “ On)) → 𝑈 = (𝑅1‘(𝑈 ∩ On))) | ||
| Theorem | bj-bm1.3ii 37097* |
The extension of a predicate (𝜑(𝑧)) is included in a set
(𝑥) if and only if it is a set (𝑦).
Sufficiency is obvious,
and necessity is the content of the axiom of separation ax-sep 5234.
Similar to Theorem 1.3(ii) of [BellMachover] p. 463. (Contributed by
NM, 21-Jun-1993.) Generalized to a closed form biconditional with
existential quantifications using two different setvars 𝑥, 𝑦 (which
need not be disjoint). (Revised by BJ, 8-Aug-2022.)
TODO: move after sepexi 5239. Relabel ("sepbi"?). |
| ⊢ (∃𝑥∀𝑧(𝜑 → 𝑧 ∈ 𝑥) ↔ ∃𝑦∀𝑧(𝑧 ∈ 𝑦 ↔ 𝜑)) | ||
| Theorem | bj-dfid2ALT 37098 | Alternate version of dfid2 5513. (Contributed by BJ, 9-Nov-2024.) (Proof modification is discouraged.) Use df-id 5511 instead to make the semantics of the construction df-opab 5154 clearer. (New usage is discouraged.) |
| ⊢ I = {〈𝑥, 𝑥〉 ∣ ⊤} | ||
| Theorem | bj-0nelopab 37099 |
The empty set is never an element in an ordered-pair class abstraction.
(Contributed by Alexander van der Vekens, 5-Nov-2017.) (Proof shortened
by BJ, 22-Jul-2023.)
TODO: move to the main section when one can reorder sections so that we can use relopab 5764 (this is a very limited reordering). |
| ⊢ ¬ ∅ ∈ {〈𝑥, 𝑦〉 ∣ 𝜑} | ||
| Theorem | bj-brrelex12ALT 37100 | Two classes related by a binary relation are both sets. Alternate proof of brrelex12 5668. (Contributed by BJ, 14-Jul-2023.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ ((Rel 𝑅 ∧ 𝐴𝑅𝐵) → (𝐴 ∈ V ∧ 𝐵 ∈ V)) | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |