New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > dedt | Unicode version |
Description: The weak deduction theorem. For more information, see the Deduction Theorem link on the Metamath Proof Explorer home page. (Contributed by NM, 26-Jun-2002.) |
Ref | Expression |
---|---|
dedt.1 | |
dedt.2 |
Ref | Expression |
---|---|
dedt |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dedlema 920 | . 2 | |
2 | dedt.2 | . . 3 | |
3 | dedt.1 | . . 3 | |
4 | 2, 3 | mpbiri 224 | . 2 |
5 | 1, 4 | syl 15 | 1 |
Colors of variables: wff setvar class |
Syntax hints: wn 3 wi 4 wb 176 wo 357 wa 358 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 |
This theorem is referenced by: con3th 924 |
Copyright terms: Public domain | W3C validator |