NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  dedt GIF version

Theorem dedt 923
Description: The weak deduction theorem. For more information, see the Deduction Theorem link on the Metamath Proof Explorer home page. (Contributed by NM, 26-Jun-2002.)
Hypotheses
Ref Expression
dedt.1 ((φ ↔ ((φ χ) (ψ ¬ χ))) → (θτ))
dedt.2 τ
Assertion
Ref Expression
dedt (χθ)

Proof of Theorem dedt
StepHypRef Expression
1 dedlema 920 . 2 (χ → (φ ↔ ((φ χ) (ψ ¬ χ))))
2 dedt.2 . . 3 τ
3 dedt.1 . . 3 ((φ ↔ ((φ χ) (ψ ¬ χ))) → (θτ))
42, 3mpbiri 224 . 2 ((φ ↔ ((φ χ) (ψ ¬ χ))) → θ)
51, 4syl 15 1 (χθ)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 176   wo 357   wa 358
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360
This theorem is referenced by:  con3th  924
  Copyright terms: Public domain W3C validator