| New Foundations Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > NFE Home > Th. List > dfnot | Unicode version | ||
| Description: Given falsum, we can
define the negation of a wff  | 
| Ref | Expression | 
|---|---|
| dfnot | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | pm2.21 100 | 
. 2
 | |
| 2 | id 19 | 
. . 3
 | |
| 3 | falim 1328 | 
. . 3
 | |
| 4 | 2, 3 | ja 153 | 
. 2
 | 
| 5 | 1, 4 | impbii 180 | 
1
 | 
| Colors of variables: wff setvar class | 
| Syntax hints:    | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 | 
| This theorem depends on definitions: df-bi 177 df-tru 1319 df-fal 1320 | 
| This theorem is referenced by: inegd 1333 | 
| Copyright terms: Public domain | W3C validator |