NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  dfnot Unicode version

Theorem dfnot 1332
Description: Given falsum, we can define the negation of a wff as the statement that a contradiction follows from assuming . (Contributed by Mario Carneiro, 9-Feb-2017.)
Assertion
Ref Expression
dfnot

Proof of Theorem dfnot
StepHypRef Expression
1 pm2.21 100 . 2
2 id 19 . . 3
3 falim 1328 . . 3
42, 3ja 153 . 2
51, 4impbii 180 1
Colors of variables: wff setvar class
Syntax hints:   wn 3   wi 4   wb 176   wfal 1317
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 177  df-tru 1319  df-fal 1320
This theorem is referenced by:  inegd  1333
  Copyright terms: Public domain W3C validator