NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  dfnot GIF version

Theorem dfnot 1332
Description: Given falsum, we can define the negation of a wff φ as the statement that a contradiction follows from assuming φ. (Contributed by Mario Carneiro, 9-Feb-2017.)
Assertion
Ref Expression
dfnot φ ↔ (φ → ⊥ ))

Proof of Theorem dfnot
StepHypRef Expression
1 pm2.21 100 . 2 φ → (φ → ⊥ ))
2 id 19 . . 3 φ → ¬ φ)
3 falim 1328 . . 3 ( ⊥ → ¬ φ)
42, 3ja 153 . 2 ((φ → ⊥ ) → ¬ φ)
51, 4impbii 180 1 φ ↔ (φ → ⊥ ))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 176  wfal 1317
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 177  df-tru 1319  df-fal 1320
This theorem is referenced by:  inegd  1333
  Copyright terms: Public domain W3C validator