NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  hbal Unicode version

Theorem hbal 1736
Description: If is not free in , it is not free in . (Contributed by NM, 5-Aug-1993.)
Hypothesis
Ref Expression
hbal.1
Assertion
Ref Expression
hbal

Proof of Theorem hbal
StepHypRef Expression
1 hbal.1 . . 3
21alimi 1559 . 2
3 ax-7 1734 . 2
42, 3syl 15 1
Colors of variables: wff setvar class
Syntax hints:   wi 4  wal 1540
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-gen 1546  ax-5 1557  ax-7 1734
This theorem is referenced by:  hbex  1841  nfal  1842  hbral  2663
  Copyright terms: Public domain W3C validator