NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  hbal GIF version

Theorem hbal 1736
Description: If x is not free in φ, it is not free in yφ. (Contributed by NM, 5-Aug-1993.)
Hypothesis
Ref Expression
hbal.1 (φxφ)
Assertion
Ref Expression
hbal (yφxyφ)

Proof of Theorem hbal
StepHypRef Expression
1 hbal.1 . . 3 (φxφ)
21alimi 1559 . 2 (yφyxφ)
3 ax-7 1734 . 2 (yxφxyφ)
42, 3syl 15 1 (yφxyφ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wal 1540
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-gen 1546  ax-5 1557  ax-7 1734
This theorem is referenced by:  hbex  1841  nfal  1842  hbral  2663
  Copyright terms: Public domain W3C validator