New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > impbida | Unicode version |
Description: Deduce an equivalence from two implications. (Contributed by NM, 17-Feb-2007.) |
Ref | Expression |
---|---|
impbida.1 | |
impbida.2 |
Ref | Expression |
---|---|
impbida |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | impbida.1 | . . 3 | |
2 | 1 | ex 423 | . 2 |
3 | impbida.2 | . . 3 | |
4 | 3 | ex 423 | . 2 |
5 | 2, 4 | impbid 183 | 1 |
Colors of variables: wff setvar class |
Syntax hints: wi 4 wb 176 wa 358 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 177 df-an 360 |
This theorem is referenced by: eqrdav 2352 funfvbrb 5402 f1o2d 5728 ersymb 5954 erth 5969 |
Copyright terms: Public domain | W3C validator |