| New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > NFE Home > Th. List > impbida | GIF version | ||
| Description: Deduce an equivalence from two implications. (Contributed by NM, 17-Feb-2007.) |
| Ref | Expression |
|---|---|
| impbida.1 | ⊢ ((φ ∧ ψ) → χ) |
| impbida.2 | ⊢ ((φ ∧ χ) → ψ) |
| Ref | Expression |
|---|---|
| impbida | ⊢ (φ → (ψ ↔ χ)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | impbida.1 | . . 3 ⊢ ((φ ∧ ψ) → χ) | |
| 2 | 1 | ex 423 | . 2 ⊢ (φ → (ψ → χ)) |
| 3 | impbida.2 | . . 3 ⊢ ((φ ∧ χ) → ψ) | |
| 4 | 3 | ex 423 | . 2 ⊢ (φ → (χ → ψ)) |
| 5 | 2, 4 | impbid 183 | 1 ⊢ (φ → (ψ ↔ χ)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 176 ∧ wa 358 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 177 df-an 360 |
| This theorem is referenced by: eqrdav 2352 funfvbrb 5402 f1o2d 5728 ersymb 5954 erth 5969 |
| Copyright terms: Public domain | W3C validator |