New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > impbid | Unicode version |
Description: Deduce an equivalence from two implications. (Contributed by NM, 5-Aug-1993.) (Revised by Wolf Lammen, 3-Nov-2012.) |
Ref | Expression |
---|---|
impbid.1 | |
impbid.2 |
Ref | Expression |
---|---|
impbid |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | impbid.1 | . . 3 | |
2 | impbid.2 | . . 3 | |
3 | 1, 2 | impbid21d 182 | . 2 |
4 | 3 | pm2.43i 43 | 1 |
Colors of variables: wff setvar class |
Syntax hints: wi 4 wb 176 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 177 |
This theorem is referenced by: bicom1 190 impbid1 194 impcon4bid 196 pm5.74 235 imbi1d 308 pm5.501 330 2falsed 340 impbida 805 dedlem0b 919 dedlema 920 dedlemb 921 albi 1564 exbi 1581 equequ1 1684 equequ1OLD 1685 elequ1 1713 elequ2 1715 19.21t 1795 19.23t 1800 19.23tOLD 1819 19.21tOLD 1863 sbequ12 1919 dral1 1965 cbv2h 1980 ax11b 1995 sbft 2025 sbied 2036 sbequ 2060 sb56 2098 sbal1 2126 exsb 2130 dral1-o 2154 eupickb 2269 eupickbi 2270 2eu2 2285 ceqsalt 2882 ceqex 2970 mob2 3017 reu6 3026 sbciegft 3077 eqsbc2 3104 csbiebt 3173 sseq1 3293 reupick 3540 reupick2 3542 uneqdifeq 3639 iotaval 4351 lenltfin 4470 ncfineleq 4478 tfinltfin 4502 copsexg 4608 iss 5001 funssres 5145 tz6.12c 5348 fvimacnv 5404 elpreima 5408 fsn 5433 fconst2g 5453 fconst5 5456 f1ocnvfvb 5480 f1oiso2 5501 oprabid 5551 erth 5969 enprmaplem5 6081 ncdisjun 6137 ce0addcnnul 6180 ce0nnulb 6183 ceclb 6184 ltlenlec 6208 dflec2 6211 tlecg 6231 muc0or 6253 lecadd2 6267 ncslesuc 6268 nchoicelem8 6297 |
Copyright terms: Public domain | W3C validator |