NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  merlem9 Unicode version

Theorem merlem9 1415
Description: Step 18 of Meredith's proof of Lukasiewicz axioms from his sole axiom. (Contributed by NM, 22-Dec-2002.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
merlem9

Proof of Theorem merlem9
StepHypRef Expression
1 merlem6 1412 . . . 4
2 merlem8 1414 . . . 4
31, 2ax-mp 5 . . 3
4 ax-meredith 1406 . . 3
53, 4ax-mp 5 . 2
6 ax-meredith 1406 . 2
75, 6ax-mp 5 1
Colors of variables: wff setvar class
Syntax hints:   wn 3   wi 4
This theorem was proved from axioms:  ax-mp 5  ax-meredith 1406
This theorem is referenced by:  merlem10  1416
  Copyright terms: Public domain W3C validator