![]() |
New Foundations Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > NFE Home > Th. List > necon2bi | Unicode version |
Description: Contrapositive inference for inequality. (Contributed by NM, 1-Apr-2007.) |
Ref | Expression |
---|---|
necon2bi.1 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
necon2bi |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | necon2bi.1 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | 1 | neneqd 2532 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
3 | 2 | con2i 112 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff setvar class |
Syntax hints: ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-3 7 ax-mp 8 |
This theorem depends on definitions: df-bi 177 df-ne 2518 |
This theorem is referenced by: necon4i 2576 minel 3606 rzal 3651 difsnb 3850 nulnnc 6118 |
Copyright terms: Public domain | W3C validator |