New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > prnz | Unicode version |
Description: A pair containing a set is not empty. (Contributed by NM, 9-Apr-1994.) |
Ref | Expression |
---|---|
prnz.1 |
Ref | Expression |
---|---|
prnz |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | prnz.1 | . . 3 | |
2 | 1 | prid1 3827 | . 2 |
3 | ne0i 3556 | . 2 | |
4 | 2, 3 | ax-mp 5 | 1 |
Colors of variables: wff setvar class |
Syntax hints: wcel 1710 wne 2516 cvv 2859 c0 3550 cpr 3738 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2478 df-ne 2518 df-v 2861 df-nin 3211 df-compl 3212 df-in 3213 df-un 3214 df-dif 3215 df-nul 3551 df-sn 3741 df-pr 3742 |
This theorem is referenced by: prnzg 3836 |
Copyright terms: Public domain | W3C validator |