New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > ne0i | Unicode version |
Description: If a set has elements, it is not empty. (Contributed by NM, 31-Dec-1993.) |
Ref | Expression |
---|---|
ne0i |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | n0i 3556 | . 2 | |
2 | df-ne 2519 | . 2 | |
3 | 1, 2 | sylibr 203 | 1 |
Colors of variables: wff setvar class |
Syntax hints: wn 3 wi 4 wceq 1642 wcel 1710 wne 2517 c0 3551 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-ne 2519 df-v 2862 df-nin 3212 df-compl 3213 df-in 3214 df-dif 3216 df-nul 3552 |
This theorem is referenced by: vn0 3558 inelcm 3606 rzal 3652 rexn0 3653 snnzg 3834 prnz 3836 tpnz 3838 pw10b 4167 tfinnnul 4491 tfinpw1 4495 tfin1c 4500 0ceven 4506 sfintfin 4533 tfinnn 4535 sfinltfin 4536 sfin111 4537 vfinspnn 4542 vfin1cltv 4548 vfinncvntnn 4549 vinf 4556 nulnnn 4557 xpnz 5046 elfvdm 5352 elovex12 5649 map0 6026 xpsnen 6050 ncssfin 6152 ce0nnulb 6183 |
Copyright terms: Public domain | W3C validator |