| New Foundations Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > NFE Home > Th. List > ralimdaa | Unicode version | ||
| Description: Deduction quantifying both antecedent and consequent, based on Theorem 19.20 of [Margaris] p. 90. (Contributed by NM, 22-Sep-2003.) | 
| Ref | Expression | 
|---|---|
| ralimdaa.1 | 
 | 
| ralimdaa.2 | 
 | 
| Ref | Expression | 
|---|---|
| ralimdaa | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | ralimdaa.1 | 
. . 3
 | |
| 2 | ralimdaa.2 | 
. . . . 5
 | |
| 3 | 2 | ex 423 | 
. . . 4
 | 
| 4 | 3 | a2d 23 | 
. . 3
 | 
| 5 | 1, 4 | alimd 1764 | 
. 2
 | 
| 6 | df-ral 2620 | 
. 2
 | |
| 7 | df-ral 2620 | 
. 2
 | |
| 8 | 5, 6, 7 | 3imtr4g 261 | 
1
 | 
| Colors of variables: wff setvar class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-11 1746 | 
| This theorem depends on definitions: df-bi 177 df-an 360 df-ex 1542 df-nf 1545 df-ral 2620 | 
| This theorem is referenced by: ralimdva 2693 | 
| Copyright terms: Public domain | W3C validator |