New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > ralimdaa | Unicode version |
Description: Deduction quantifying both antecedent and consequent, based on Theorem 19.20 of [Margaris] p. 90. (Contributed by NM, 22-Sep-2003.) |
Ref | Expression |
---|---|
ralimdaa.1 | |
ralimdaa.2 |
Ref | Expression |
---|---|
ralimdaa |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ralimdaa.1 | . . 3 | |
2 | ralimdaa.2 | . . . . 5 | |
3 | 2 | ex 423 | . . . 4 |
4 | 3 | a2d 23 | . . 3 |
5 | 1, 4 | alimd 1764 | . 2 |
6 | df-ral 2620 | . 2 | |
7 | df-ral 2620 | . 2 | |
8 | 5, 6, 7 | 3imtr4g 261 | 1 |
Colors of variables: wff setvar class |
Syntax hints: wi 4 wa 358 wal 1540 wnf 1544 wcel 1710 wral 2615 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-11 1746 |
This theorem depends on definitions: df-bi 177 df-an 360 df-ex 1542 df-nf 1545 df-ral 2620 |
This theorem is referenced by: ralimdva 2693 |
Copyright terms: Public domain | W3C validator |