New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > ralimdaa | GIF version |
Description: Deduction quantifying both antecedent and consequent, based on Theorem 19.20 of [Margaris] p. 90. (Contributed by NM, 22-Sep-2003.) |
Ref | Expression |
---|---|
ralimdaa.1 | ⊢ Ⅎxφ |
ralimdaa.2 | ⊢ ((φ ∧ x ∈ A) → (ψ → χ)) |
Ref | Expression |
---|---|
ralimdaa | ⊢ (φ → (∀x ∈ A ψ → ∀x ∈ A χ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ralimdaa.1 | . . 3 ⊢ Ⅎxφ | |
2 | ralimdaa.2 | . . . . 5 ⊢ ((φ ∧ x ∈ A) → (ψ → χ)) | |
3 | 2 | ex 423 | . . . 4 ⊢ (φ → (x ∈ A → (ψ → χ))) |
4 | 3 | a2d 23 | . . 3 ⊢ (φ → ((x ∈ A → ψ) → (x ∈ A → χ))) |
5 | 1, 4 | alimd 1764 | . 2 ⊢ (φ → (∀x(x ∈ A → ψ) → ∀x(x ∈ A → χ))) |
6 | df-ral 2620 | . 2 ⊢ (∀x ∈ A ψ ↔ ∀x(x ∈ A → ψ)) | |
7 | df-ral 2620 | . 2 ⊢ (∀x ∈ A χ ↔ ∀x(x ∈ A → χ)) | |
8 | 5, 6, 7 | 3imtr4g 261 | 1 ⊢ (φ → (∀x ∈ A ψ → ∀x ∈ A χ)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 358 ∀wal 1540 Ⅎwnf 1544 ∈ wcel 1710 ∀wral 2615 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-11 1746 |
This theorem depends on definitions: df-bi 177 df-an 360 df-ex 1542 df-nf 1545 df-ral 2620 |
This theorem is referenced by: ralimdva 2693 |
Copyright terms: Public domain | W3C validator |