| New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > NFE Home > Th. List > 3bitr3rd | GIF version | ||
| Description: Deduction from transitivity of biconditional. (Contributed by NM, 4-Aug-2006.) |
| Ref | Expression |
|---|---|
| 3bitr3d.1 | ⊢ (φ → (ψ ↔ χ)) |
| 3bitr3d.2 | ⊢ (φ → (ψ ↔ θ)) |
| 3bitr3d.3 | ⊢ (φ → (χ ↔ τ)) |
| Ref | Expression |
|---|---|
| 3bitr3rd | ⊢ (φ → (τ ↔ θ)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3bitr3d.3 | . 2 ⊢ (φ → (χ ↔ τ)) | |
| 2 | 3bitr3d.1 | . . 3 ⊢ (φ → (ψ ↔ χ)) | |
| 3 | 3bitr3d.2 | . . 3 ⊢ (φ → (ψ ↔ θ)) | |
| 4 | 2, 3 | bitr3d 246 | . 2 ⊢ (φ → (χ ↔ θ)) |
| 5 | 1, 4 | bitr3d 246 | 1 ⊢ (φ → (τ ↔ θ)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 176 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 177 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |