NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  3bitr4d GIF version

Theorem 3bitr4d 276
Description: Deduction from transitivity of biconditional. Useful for converting conditional definitions in a formula. (Contributed by NM, 18-Oct-1995.)
Hypotheses
Ref Expression
3bitr4d.1 (φ → (ψχ))
3bitr4d.2 (φ → (θψ))
3bitr4d.3 (φ → (τχ))
Assertion
Ref Expression
3bitr4d (φ → (θτ))

Proof of Theorem 3bitr4d
StepHypRef Expression
1 3bitr4d.2 . 2 (φ → (θψ))
2 3bitr4d.1 . . 3 (φ → (ψχ))
3 3bitr4d.3 . . 3 (φ → (τχ))
42, 3bitr4d 247 . 2 (φ → (ψτ))
51, 4bitrd 244 1 (φ → (θτ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 176
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 177
This theorem is referenced by:  sbcom  2089  sbcom2  2114  r19.12sn  3790  lefinlteq  4464  eqtfinrelk  4487  tfinlefin  4503  opbrop  4842  fvopab3g  5387  unpreima  5409  inpreima  5410  respreima  5411  fconst5  5456  isotr  5496  ncseqnc  6129
  Copyright terms: Public domain W3C validator