NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  bitr3d GIF version

Theorem bitr3d 246
Description: Deduction form of bitr3i 242. (Contributed by NM, 5-Aug-1993.)
Hypotheses
Ref Expression
bitr3d.1 (φ → (ψχ))
bitr3d.2 (φ → (ψθ))
Assertion
Ref Expression
bitr3d (φ → (χθ))

Proof of Theorem bitr3d
StepHypRef Expression
1 bitr3d.1 . . 3 (φ → (ψχ))
21bicomd 192 . 2 (φ → (χψ))
3 bitr3d.2 . 2 (φ → (ψθ))
42, 3bitrd 244 1 (φ → (χθ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 176
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 177
This theorem is referenced by:  3bitrrd  271  3bitr3d  274  3bitr3rd  275  biass  348  sbequ12a  1921  sbco2  2086  sbco3  2088  sbcom  2089  sb9i  2094  sbcom2  2114  sbal1  2126  sbal  2127  csbiebt  3173  opkelimagekg  4272  copsex2t  4609  copsex2g  4610  resieq  4980  fnssresb  5196  funimass5  5406  isocnv  5492  isoini  5498  ovmpt2x  5713  brcupg  5815  brcomposeg  5820  brcrossg  5849  enpw1  6063  enmap1lem3  6072  nenpw1pwlem2  6086  te0c  6238
  Copyright terms: Public domain W3C validator