NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  3mix3i GIF version

Theorem 3mix3i 1129
Description: Introduction in triple disjunction. (Contributed by Mario Carneiro, 6-Oct-2014.)
Hypothesis
Ref Expression
3mixi.1 φ
Assertion
Ref Expression
3mix3i (ψ χ φ)

Proof of Theorem 3mix3i
StepHypRef Expression
1 3mixi.1 . 2 φ
2 3mix3 1126 . 2 (φ → (ψ χ φ))
31, 2ax-mp 5 1 (ψ χ φ)
Colors of variables: wff setvar class
Syntax hints:   w3o 933
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 177  df-or 359  df-3or 935
This theorem is referenced by:  tpid3  3833
  Copyright terms: Public domain W3C validator