NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  3mix3 GIF version

Theorem 3mix3 1126
Description: Introduction in triple disjunction. (Contributed by NM, 4-Apr-1995.)
Assertion
Ref Expression
3mix3 (φ → (ψ χ φ))

Proof of Theorem 3mix3
StepHypRef Expression
1 3mix1 1124 . 2 (φ → (φ ψ χ))
2 3orrot 940 . 2 ((φ ψ χ) ↔ (ψ χ φ))
31, 2sylib 188 1 (φ → (ψ χ φ))
Colors of variables: wff setvar class
Syntax hints:  wi 4   w3o 933
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 177  df-or 359  df-3or 935
This theorem is referenced by:  3mix3i  1129  3jaob  1244  tpid3g  3832  ltfintri  4467
  Copyright terms: Public domain W3C validator