| New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > NFE Home > Th. List > 3pm3.2i | GIF version | ||
| Description: Infer conjunction of premises. (Contributed by NM, 10-Feb-1995.) |
| Ref | Expression |
|---|---|
| 3pm3.2i.1 | ⊢ φ |
| 3pm3.2i.2 | ⊢ ψ |
| 3pm3.2i.3 | ⊢ χ |
| Ref | Expression |
|---|---|
| 3pm3.2i | ⊢ (φ ∧ ψ ∧ χ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3pm3.2i.1 | . . 3 ⊢ φ | |
| 2 | 3pm3.2i.2 | . . 3 ⊢ ψ | |
| 3 | 1, 2 | pm3.2i 441 | . 2 ⊢ (φ ∧ ψ) |
| 4 | 3pm3.2i.3 | . 2 ⊢ χ | |
| 5 | df-3an 936 | . 2 ⊢ ((φ ∧ ψ ∧ χ) ↔ ((φ ∧ ψ) ∧ χ)) | |
| 6 | 3, 4, 5 | mpbir2an 886 | 1 ⊢ (φ ∧ ψ ∧ χ) |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 358 ∧ w3a 934 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 177 df-an 360 df-3an 936 |
| This theorem is referenced by: mpbir3an 1134 3jaoi 1245 |
| Copyright terms: Public domain | W3C validator |