| New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > NFE Home > Th. List > 4casesdan | GIF version | ||
| Description: Deduction eliminating two antecedents from the four possible cases that result from their true/false combinations. (Contributed by NM, 19-Mar-2013.) |
| Ref | Expression |
|---|---|
| 4casesdan.1 | ⊢ ((φ ∧ (ψ ∧ χ)) → θ) |
| 4casesdan.2 | ⊢ ((φ ∧ (ψ ∧ ¬ χ)) → θ) |
| 4casesdan.3 | ⊢ ((φ ∧ (¬ ψ ∧ χ)) → θ) |
| 4casesdan.4 | ⊢ ((φ ∧ (¬ ψ ∧ ¬ χ)) → θ) |
| Ref | Expression |
|---|---|
| 4casesdan | ⊢ (φ → θ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 4casesdan.1 | . . 3 ⊢ ((φ ∧ (ψ ∧ χ)) → θ) | |
| 2 | 1 | expcom 424 | . 2 ⊢ ((ψ ∧ χ) → (φ → θ)) |
| 3 | 4casesdan.2 | . . 3 ⊢ ((φ ∧ (ψ ∧ ¬ χ)) → θ) | |
| 4 | 3 | expcom 424 | . 2 ⊢ ((ψ ∧ ¬ χ) → (φ → θ)) |
| 5 | 4casesdan.3 | . . 3 ⊢ ((φ ∧ (¬ ψ ∧ χ)) → θ) | |
| 6 | 5 | expcom 424 | . 2 ⊢ ((¬ ψ ∧ χ) → (φ → θ)) |
| 7 | 4casesdan.4 | . . 3 ⊢ ((φ ∧ (¬ ψ ∧ ¬ χ)) → θ) | |
| 8 | 7 | expcom 424 | . 2 ⊢ ((¬ ψ ∧ ¬ χ) → (φ → θ)) |
| 9 | 2, 4, 6, 8 | 4cases 915 | 1 ⊢ (φ → θ) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 358 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 177 df-an 360 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |