![]() |
New Foundations Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > NFE Home > Th. List > expcom | GIF version |
Description: Exportation inference with commuted antecedents. (Contributed by NM, 25-May-2005.) |
Ref | Expression |
---|---|
exp.1 | ⊢ ((φ ∧ ψ) → χ) |
Ref | Expression |
---|---|
expcom | ⊢ (ψ → (φ → χ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | exp.1 | . . 3 ⊢ ((φ ∧ ψ) → χ) | |
2 | 1 | ex 423 | . 2 ⊢ (φ → (ψ → χ)) |
3 | 2 | com12 27 | 1 ⊢ (ψ → (φ → χ)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 358 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-3 7 ax-mp 8 |
This theorem depends on definitions: df-bi 177 df-an 360 |
This theorem is referenced by: ancoms 439 syldan 456 sylan 457 4casesdan 916 dedlema 920 dedlemb 921 dvelimv 1939 cbval2 2004 cbvex2 2005 2moswap 2279 2mos 2283 2eu2 2285 pm2.61ne 2591 r19.21be 2715 uneqdifeq 3638 ssunsn2 3865 ssuni 3913 uniss2 3922 elpwuni 4053 lenltfin 4469 tfincl 4492 tfinltfin 4501 evenoddnnnul 4514 nnadjoin 4520 vfinncvntnn 4548 fun 5236 tz6.12c 5347 eqfnfv 5392 fnressn 5438 fressnfv 5439 fconst2g 5452 eloprabga 5578 ndmovcl 5614 fvmptnf 5723 mapsn 6026 mapss 6027 enprmaplem3 6078 sbthlem2 6204 nmembers1lem3 6270 nchoicelem12 6300 |
Copyright terms: Public domain | W3C validator |