New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > expcom | GIF version |
Description: Exportation inference with commuted antecedents. (Contributed by NM, 25-May-2005.) |
Ref | Expression |
---|---|
exp.1 | ⊢ ((φ ∧ ψ) → χ) |
Ref | Expression |
---|---|
expcom | ⊢ (ψ → (φ → χ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | exp.1 | . . 3 ⊢ ((φ ∧ ψ) → χ) | |
2 | 1 | ex 423 | . 2 ⊢ (φ → (ψ → χ)) |
3 | 2 | com12 27 | 1 ⊢ (ψ → (φ → χ)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 358 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 177 df-an 360 |
This theorem is referenced by: ancoms 439 syldan 456 sylan 457 4casesdan 916 dedlema 920 dedlemb 921 dvelimv 1939 cbval2 2004 cbvex2 2005 2moswap 2279 2mos 2283 2eu2 2285 pm2.61ne 2592 r19.21be 2716 uneqdifeq 3639 ssunsn2 3866 ssuni 3914 uniss2 3923 elpwuni 4054 lenltfin 4470 tfincl 4493 tfinltfin 4502 evenoddnnnul 4515 nnadjoin 4521 vfinncvntnn 4549 fun 5237 tz6.12c 5348 eqfnfv 5393 fnressn 5439 fressnfv 5440 fconst2g 5453 eloprabga 5579 ndmovcl 5615 fvmptnf 5724 mapsn 6027 mapss 6028 enprmaplem3 6079 sbthlem2 6205 nmembers1lem3 6271 nchoicelem12 6301 |
Copyright terms: Public domain | W3C validator |