| New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > NFE Home > Th. List > anabss4 | GIF version | ||
| Description: Absorption of antecedent into conjunction. (Contributed by NM, 20-Jul-1996.) |
| Ref | Expression |
|---|---|
| anabss4.1 | ⊢ (((ψ ∧ φ) ∧ ψ) → χ) |
| Ref | Expression |
|---|---|
| anabss4 | ⊢ ((φ ∧ ψ) → χ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | anabss4.1 | . . 3 ⊢ (((ψ ∧ φ) ∧ ψ) → χ) | |
| 2 | 1 | anabss1 787 | . 2 ⊢ ((ψ ∧ φ) → χ) |
| 3 | 2 | ancoms 439 | 1 ⊢ ((φ ∧ ψ) → χ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 358 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 177 df-an 360 |
| This theorem is referenced by: anabss7 794 |
| Copyright terms: Public domain | W3C validator |