New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > ancoms | GIF version |
Description: Inference commuting conjunction in antecedent. (Contributed by NM, 21-Apr-1994.) |
Ref | Expression |
---|---|
ancoms.1 | ⊢ ((φ ∧ ψ) → χ) |
Ref | Expression |
---|---|
ancoms | ⊢ ((ψ ∧ φ) → χ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ancoms.1 | . . 3 ⊢ ((φ ∧ ψ) → χ) | |
2 | 1 | expcom 424 | . 2 ⊢ (ψ → (φ → χ)) |
3 | 2 | imp 418 | 1 ⊢ ((ψ ∧ φ) → χ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 358 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 177 df-an 360 |
This theorem is referenced by: adantl 452 syl2anr 464 anim12ci 550 sylan9bbr 681 anabss4 788 anabsi7 792 anabsi8 793 im2anan9r 809 bi2anan9r 844 syl3anr2 1235 mp3anr1 1274 mp3anr2 1275 mp3anr3 1276 19.29r 1597 nfeud2 2216 2eu1 2284 2eu3 2286 eqeqan12rd 2369 sylan9eqr 2407 morex 3020 sbcrext 3119 sylan9ssr 3286 pssdifcom1 3635 pssdifcom2 3636 riinn0 4040 symdifexg 4103 addcexg 4393 findsd 4410 nnsucelr 4428 nulge 4456 lenltfin 4469 ncfinprop 4474 ncfinlower 4483 tfinltfin 4501 tfinlefin 4502 sfindbl 4530 sfinltfin 4535 sfin111 4536 nulnnn 4556 phi11lem1 4595 breqan12rd 4655 dminss 5041 imainss 5042 dfco2a 5081 funeq 5127 funcnvuni 5161 f1co 5264 fun11iun 5305 fsn2 5434 isotr 5495 oveqan12rd 5542 clos1conn 5879 mapvalg 6009 pmvalg 6010 entr 6038 fndmeng 6046 xpsnen2g 6054 ovmuc 6130 muccom 6134 peano4nc 6150 eqtc 6161 cenc 6181 sbth 6206 dflec2 6210 leltctr 6212 leconnnc 6218 ce2le 6233 nclenn 6249 lemuc1 6253 nnc3n3p2 6279 nchoicelem12 6300 nchoicelem17 6305 fnfrec 6320 |
Copyright terms: Public domain | W3C validator |