New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > ancoms | GIF version |
Description: Inference commuting conjunction in antecedent. (Contributed by NM, 21-Apr-1994.) |
Ref | Expression |
---|---|
ancoms.1 | ⊢ ((φ ∧ ψ) → χ) |
Ref | Expression |
---|---|
ancoms | ⊢ ((ψ ∧ φ) → χ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ancoms.1 | . . 3 ⊢ ((φ ∧ ψ) → χ) | |
2 | 1 | expcom 424 | . 2 ⊢ (ψ → (φ → χ)) |
3 | 2 | imp 418 | 1 ⊢ ((ψ ∧ φ) → χ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 358 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 177 df-an 360 |
This theorem is referenced by: adantl 452 syl2anr 464 anim12ci 550 sylan9bbr 681 anabss4 788 anabsi7 792 anabsi8 793 im2anan9r 809 bi2anan9r 844 syl3anr2 1235 mp3anr1 1274 mp3anr2 1275 mp3anr3 1276 19.29r 1597 nfeud2 2216 2eu1 2284 2eu3 2286 eqeqan12rd 2369 sylan9eqr 2407 morex 3021 sbcrext 3120 sylan9ssr 3287 pssdifcom1 3636 pssdifcom2 3637 riinn0 4041 symdifexg 4104 addcexg 4394 findsd 4411 nnsucelr 4429 nulge 4457 lenltfin 4470 ncfinprop 4475 ncfinlower 4484 tfinltfin 4502 tfinlefin 4503 sfindbl 4531 sfinltfin 4536 sfin111 4537 nulnnn 4557 phi11lem1 4596 breqan12rd 4656 dminss 5042 imainss 5043 dfco2a 5082 funeq 5128 funcnvuni 5162 f1co 5265 fun11iun 5306 fsn2 5435 isotr 5496 oveqan12rd 5543 clos1conn 5880 mapvalg 6010 pmvalg 6011 entr 6039 fndmeng 6047 xpsnen2g 6055 ovmuc 6131 muccom 6135 peano4nc 6151 eqtc 6162 cenc 6182 sbth 6207 dflec2 6211 leltctr 6213 leconnnc 6219 ce2le 6234 nclenn 6250 lemuc1 6254 nnc3n3p2 6280 nchoicelem12 6301 nchoicelem17 6306 fnfrec 6321 |
Copyright terms: Public domain | W3C validator |