Detailed syntax breakdown of Axiom ax-xp
Step | Hyp | Ref
| Expression |
1 | | vz |
. . . . 5
setvar z |
2 | | vy |
. . . . 5
setvar y |
3 | 1, 2 | wel 1711 |
. . . 4
wff z
∈ y |
4 | 1 | cv 1641 |
. . . . . . . 8
class z |
5 | | vw |
. . . . . . . . . 10
setvar w |
6 | 5 | cv 1641 |
. . . . . . . . 9
class w |
7 | | vt |
. . . . . . . . . 10
setvar t |
8 | 7 | cv 1641 |
. . . . . . . . 9
class t |
9 | 6, 8 | copk 4058 |
. . . . . . . 8
class ⟪w, t⟫ |
10 | 4, 9 | wceq 1642 |
. . . . . . 7
wff z =
⟪w, t⟫ |
11 | | vx |
. . . . . . . 8
setvar x |
12 | 7, 11 | wel 1711 |
. . . . . . 7
wff t
∈ x |
13 | 10, 12 | wa 358 |
. . . . . 6
wff (z
= ⟪w, t⟫ ∧
t ∈
x) |
14 | 13, 7 | wex 1541 |
. . . . 5
wff ∃t(z = ⟪w,
t⟫ ∧ t ∈ x) |
15 | 14, 5 | wex 1541 |
. . . 4
wff ∃w∃t(z = ⟪w,
t⟫ ∧ t ∈ x) |
16 | 3, 15 | wb 176 |
. . 3
wff (z
∈ y
↔ ∃w∃t(z =
⟪w, t⟫ ∧
t ∈
x)) |
17 | 16, 1 | wal 1540 |
. 2
wff ∀z(z ∈ y ↔ ∃w∃t(z = ⟪w,
t⟫ ∧ t ∈ x)) |
18 | 17, 2 | wex 1541 |
1
wff ∃y∀z(z ∈ y ↔ ∃w∃t(z = ⟪w,
t⟫ ∧ t ∈ x)) |