Detailed syntax breakdown of Axiom ax-cnv
| Step | Hyp | Ref
 | Expression | 
| 1 |   | vz | 
. . . . . . . 8
setvar z | 
| 2 | 1 | cv 1641 | 
. . . . . . 7
class z | 
| 3 |   | vw | 
. . . . . . . 8
setvar w | 
| 4 | 3 | cv 1641 | 
. . . . . . 7
class w | 
| 5 | 2, 4 | copk 4058 | 
. . . . . 6
class ⟪z, w⟫ | 
| 6 |   | vy | 
. . . . . . 7
setvar y | 
| 7 | 6 | cv 1641 | 
. . . . . 6
class y | 
| 8 | 5, 7 | wcel 1710 | 
. . . . 5
wff ⟪z, w⟫
∈ y | 
| 9 | 4, 2 | copk 4058 | 
. . . . . 6
class ⟪w, z⟫ | 
| 10 |   | vx | 
. . . . . . 7
setvar x | 
| 11 | 10 | cv 1641 | 
. . . . . 6
class x | 
| 12 | 9, 11 | wcel 1710 | 
. . . . 5
wff ⟪w, z⟫
∈ x | 
| 13 | 8, 12 | wb 176 | 
. . . 4
wff (⟪z, w⟫
∈ y
↔ ⟪w, z⟫ ∈
x) | 
| 14 | 13, 3 | wal 1540 | 
. . 3
wff ∀w(⟪z,
w⟫ ∈ y ↔
⟪w, z⟫ ∈
x) | 
| 15 | 14, 1 | wal 1540 | 
. 2
wff ∀z∀w(⟪z,
w⟫ ∈ y ↔
⟪w, z⟫ ∈
x) | 
| 16 | 15, 6 | wex 1541 | 
1
wff ∃y∀z∀w(⟪z,
w⟫ ∈ y ↔
⟪w, z⟫ ∈
x) |