Detailed syntax breakdown of Axiom ax-cnv
| Step | Hyp | Ref
| Expression |
| 1 | | vz |
. . . . . . . 8
setvar z |
| 2 | 1 | cv 1641 |
. . . . . . 7
class z |
| 3 | | vw |
. . . . . . . 8
setvar w |
| 4 | 3 | cv 1641 |
. . . . . . 7
class w |
| 5 | 2, 4 | copk 4058 |
. . . . . 6
class ⟪z, w⟫ |
| 6 | | vy |
. . . . . . 7
setvar y |
| 7 | 6 | cv 1641 |
. . . . . 6
class y |
| 8 | 5, 7 | wcel 1710 |
. . . . 5
wff ⟪z, w⟫
∈ y |
| 9 | 4, 2 | copk 4058 |
. . . . . 6
class ⟪w, z⟫ |
| 10 | | vx |
. . . . . . 7
setvar x |
| 11 | 10 | cv 1641 |
. . . . . 6
class x |
| 12 | 9, 11 | wcel 1710 |
. . . . 5
wff ⟪w, z⟫
∈ x |
| 13 | 8, 12 | wb 176 |
. . . 4
wff (⟪z, w⟫
∈ y
↔ ⟪w, z⟫ ∈
x) |
| 14 | 13, 3 | wal 1540 |
. . 3
wff ∀w(⟪z,
w⟫ ∈ y ↔
⟪w, z⟫ ∈
x) |
| 15 | 14, 1 | wal 1540 |
. 2
wff ∀z∀w(⟪z,
w⟫ ∈ y ↔
⟪w, z⟫ ∈
x) |
| 16 | 15, 6 | wex 1541 |
1
wff ∃y∀z∀w(⟪z,
w⟫ ∈ y ↔
⟪w, z⟫ ∈
x) |