NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  ax46 GIF version

Theorem ax46 2162
Description: Proof of a single axiom that can replace ax-4 2135 and ax-6o 2137. See ax46to4 2163 and ax46to6 2164 for the re-derivation of those axioms. (Contributed by Scott Fenton, 12-Sep-2005.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
ax46 ((x ¬ xφxφ) → φ)

Proof of Theorem ax46
StepHypRef Expression
1 ax-6o 2137 . 2 x ¬ xφφ)
2 ax-4 2135 . 2 (xφφ)
31, 2ja 153 1 ((x ¬ xφxφ) → φ)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wal 1540
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-4 2135  ax-6o 2137
This theorem is referenced by:  ax46to4  2163  ax46to6  2164
  Copyright terms: Public domain W3C validator