NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  ax-6o GIF version

Axiom ax-6o 2137
Description: Axiom of Quantified Negation. This axiom is used to manipulate negated quantifiers. One of the 4 axioms of pure predicate calculus. Equivalent to axiom scheme C7' in [Megill] p. 448 (p. 16 of the preprint). An alternate axiomatization could use ax467 2169 in place of ax-4 2135, ax-6o 2137, and ax-7 1734.

This axiom is obsolete and should no longer be used. It is proved above as Theorem ax6o 1750. (Contributed by NM, 5-Aug-1993.) (New usage is discouraged.)

Assertion
Ref Expression
ax-6o x ¬ xφφ)

Detailed syntax breakdown of Axiom ax-6o
StepHypRef Expression
1 wph . . . . . 6 wff φ
2 vx . . . . . 6 setvar x
31, 2wal 1540 . . . . 5 wff xφ
43wn 3 . . . 4 wff ¬ xφ
54, 2wal 1540 . . 3 wff x ¬ xφ
65wn 3 . 2 wff ¬ x ¬ xφ
76, 1wi 4 1 wff x ¬ xφφ)
Colors of variables: wff setvar class
This axiom is referenced by:  ax6  2147  ax9from9o  2148  equid1  2158  ax46  2162  ax67  2165  ax467  2169  equid1ALT  2176
  Copyright terms: Public domain W3C validator