NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  biortn GIF version

Theorem biortn 395
Description: A wff is equivalent to its negated disjunction with falsehood. (Contributed by NM, 9-Jul-2012.)
Assertion
Ref Expression
biortn (φ → (ψ ↔ (¬ φ ψ)))

Proof of Theorem biortn
StepHypRef Expression
1 notnot1 114 . 2 (φ → ¬ ¬ φ)
2 biorf 394 . 2 (¬ ¬ φ → (ψ ↔ (¬ φ ψ)))
31, 2syl 15 1 (φ → (ψ ↔ (¬ φ ψ)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 176   wo 357
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 177  df-or 359
This theorem is referenced by:  oranabs  829
  Copyright terms: Public domain W3C validator