NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  oranabs GIF version

Theorem oranabs 829
Description: Absorb a disjunct into a conjunct. (Contributed by Roy F. Longton, 23-Jun-2005.) (Proof shortened by Wolf Lammen, 10-Nov-2013.)
Assertion
Ref Expression
oranabs (((φ ¬ ψ) ψ) ↔ (φ ψ))

Proof of Theorem oranabs
StepHypRef Expression
1 biortn 395 . . 3 (ψ → (φ ↔ (¬ ψ φ)))
2 orcom 376 . . 3 ((¬ ψ φ) ↔ (φ ¬ ψ))
31, 2syl6rbb 253 . 2 (ψ → ((φ ¬ ψ) ↔ φ))
43pm5.32ri 619 1 (((φ ¬ ψ) ψ) ↔ (φ ψ))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 176   wo 357   wa 358
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator