| New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > NFE Home > Th. List > oranabs | GIF version | ||
| Description: Absorb a disjunct into a conjunct. (Contributed by Roy F. Longton, 23-Jun-2005.) (Proof shortened by Wolf Lammen, 10-Nov-2013.) |
| Ref | Expression |
|---|---|
| oranabs | ⊢ (((φ ∨ ¬ ψ) ∧ ψ) ↔ (φ ∧ ψ)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | biortn 395 | . . 3 ⊢ (ψ → (φ ↔ (¬ ψ ∨ φ))) | |
| 2 | orcom 376 | . . 3 ⊢ ((¬ ψ ∨ φ) ↔ (φ ∨ ¬ ψ)) | |
| 3 | 1, 2 | syl6rbb 253 | . 2 ⊢ (ψ → ((φ ∨ ¬ ψ) ↔ φ)) |
| 4 | 3 | pm5.32ri 619 | 1 ⊢ (((φ ∨ ¬ ψ) ∧ ψ) ↔ (φ ∧ ψ)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 176 ∨ wo 357 ∧ wa 358 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |