| New Foundations Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > NFE Home > Th. List > biorf | GIF version | ||
| Description: A wff is equivalent to its disjunction with falsehood. Theorem *4.74 of [WhiteheadRussell] p. 121. (Contributed by NM, 23-Mar-1995.) (Proof shortened by Wolf Lammen, 18-Nov-2012.) | 
| Ref | Expression | 
|---|---|
| biorf | ⊢ (¬ φ → (ψ ↔ (φ ∨ ψ))) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | olc 373 | . 2 ⊢ (ψ → (φ ∨ ψ)) | |
| 2 | orel1 371 | . 2 ⊢ (¬ φ → ((φ ∨ ψ) → ψ)) | |
| 3 | 1, 2 | impbid2 195 | 1 ⊢ (¬ φ → (ψ ↔ (φ ∨ ψ))) | 
| Colors of variables: wff setvar class | 
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 176 ∨ wo 357 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 | 
| This theorem depends on definitions: df-bi 177 df-or 359 | 
| This theorem is referenced by: biortn 395 pm5.61 693 pm5.55 867 cadan 1392 euor 2231 eueq3 3012 unineq 3506 ifor 3703 difprsnss 3847 eqtfinrelk 4487 dfphi2 4570 | 
| Copyright terms: Public domain | W3C validator |