NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  bisym GIF version

Theorem bisym 281
Description: Express symmetries of theorems in terms of biconditionals. (Contributed by Wolf Lammen, 14-May-2013.)
Assertion
Ref Expression
bisym (((φψ) → (χθ)) → (((ψφ) → (θχ)) → ((φψ) → (χθ))))

Proof of Theorem bisym
StepHypRef Expression
1 bi3 179 . 2 ((χθ) → ((θχ) → (χθ)))
21bi3ant 280 1 (((φψ) → (χθ)) → (((ψφ) → (θχ)) → ((φψ) → (χθ))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 176
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 177
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator